Multi-Agent Deep Reinforcement Learning Based Scheduling Approach for Mobile Charging in Internet of Electric Vehicles

被引:1
|
作者
Liu, Linfeng [1 ,2 ]
Huang, Zhuo [1 ,2 ]
Xu, Jia [1 ,2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Comp Sci & Technol, Nanjing 210023, Peoples R China
[2] Jiangsu Key Lab Big Data Secur & Intelligent Proc, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Electricity; Processor scheduling; Charging stations; Optimal scheduling; Schedules; Electric vehicles; Deep reinforcement learning; Internet of Electric Vehicles; mobile charging station; multi-agent deep reinforcement learning; scheduling strategy; CHALLENGES;
D O I
10.1109/TMC.2024.3373410
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mobile charging stations (MCSs) have become an indispensable complement of fixed charging stations. In the regions where fixed charging stations are sparsely deployed or even absent, the main concern is that how to properly schedule MCSs to charge the electric vehicles with insufficient electricity (EVCs). In this paper, we focus on the scheduling of idle MCSs and pending EVCs. To increase the charging revenue of MCSs and enhance the proportion of successfully charged EVCs, we schedule idle MCSs to proactively track some EVCs with potential charging demand, and schedule pending EVCs to approach some busy MCSs for potential charging opportunities. To this end, a Scheduling Approach based on Multi-Agent Deep Reinforcement Learning (SA-MADRL) is proposed to train the scheduling models for agents (idle MCSs and pending EVCs). In SA-MADRL, the agents obtain the local observations to make the scheduling decisions. Both idle MCSs and pending EVCs can independently make the scheduling decisions, and thus SA-MADRL can realize the fully distributed scheduling and has a good scalability. Extensive simulations and comparisons demonstrate the performance superiority of SA-MADRL, i.e., the charging revenue of MCSs can be significantly increased, and the proportion of successfully charged EVCs can be effectively enhanced.
引用
收藏
页码:10130 / 10145
页数:16
相关论文
共 50 条
  • [1] Novel Edge Caching Approach Based on Multi-Agent Deep Reinforcement Learning for Internet of Vehicles
    Zhang, Degan
    Wang, Wenjing
    Zhang, Jie
    Zhang, Ting
    Du, Jinyu
    Yang, Chun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (08) : 8324 - 8338
  • [2] Multi-agent deep reinforcement learning approach for EV charging scheduling in a smart grid
    Park, Keonwoo
    Moon, Ilkyeong
    APPLIED ENERGY, 2022, 328
  • [3] Optimization of Electric Vehicles Charging Scheduling Based on Deep Reinforcement Learning: A Decentralized Approach
    Azzouz, Imen
    Fekih Hassen, Wiem
    ENERGIES, 2023, 16 (24)
  • [4] A multi-agent based scheduling algorithm for adaptive electric vehicles charging
    Xydas, Erotokritos
    Marmaras, Charalampos
    Cipcigan, Liana M.
    APPLIED ENERGY, 2016, 177 : 354 - 365
  • [5] A deep reinforcement learning-based charging scheduling approach with augmented Lagrangian for electric vehicles
    Yang, Lun
    Chen, Guibin
    Cao, Xiaoyu
    APPLIED ENERGY, 2025, 378
  • [6] Optimal scheduling of shared autonomous electric vehicles with multi-agent reinforcement learning: A MAPPO-based approach
    Tian, Jingjing
    Jia, Hongfei
    Wang, Guanfeng
    Huang, Qiuyang
    Wu, Ruiyi
    Gao, Heyao
    Liu, Chao
    NEUROCOMPUTING, 2025, 622
  • [7] Multi-agent reinforcement learning for electric vehicles joint routing and scheduling strategies
    Wang, Yi
    Qiu, Dawei
    Strbac, Goran
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 3044 - 3049
  • [8] Optimal scheduling for charging and discharging of electric vehicles based on deep reinforcement learning
    An, Dou
    Cui, Feifei
    Kang, Xun
    FRONTIERS IN ENERGY RESEARCH, 2023, 11
  • [9] A deep reinforcement learning based charging and discharging scheduling strategy for electric vehicles
    Xiao, Qin
    Zhang, Runtao
    Wang, Yongcan
    Shi, Peng
    Wang, Xi
    Chen, Baorui
    Fan, Chengwei
    Chen, Gang
    ENERGY REPORTS, 2024, 12 : 4854 - 4863
  • [10] Multi-Agent Deep Reinforcement Learning for content caching within the Internet of Vehicles
    Knari, Anas
    Derfouf, Mostapha
    Koulali, Mohammed-Amine
    Khoumsi, Ahmed
    Ad Hoc Networks, 2024, 152