Optimizing the fundamental eigenvalue gap of quantum graphs

被引:0
作者
Ahrami, Mohammed [1 ]
El Allali, Zakaria [1 ]
Harrell II, Evans M. [2 ]
Kennedy, James B. [3 ,4 ]
机构
[1] Mohammed I Univ, Multidisciplinary Fac Nador, Modeling & Sci Comp Team, Nador, Morocco
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[3] Univ Lisbon, Fac Ciencias, Grp Fis Matemat, P-1749016 Lisbon, Portugal
[4] Univ Lisbon, Fac Ciencias, Dept Matemat, P-1749016 Lisbon, Portugal
关键词
fundamental spectral gap; eigenvalue estimates; Schr & ouml; dinger operator; convex potential; single-well potential; quantum graph; tree graph; 1ST; 2; EIGENVALUES; OPERATORS;
D O I
10.1088/1751-8121/ad6410
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the problem of minimizing or maximizing the fundamental spectral gap of Schr & ouml;dinger operators on metric graphs with either a convex potential or a 'single-well' potential on an appropriate specified subset. (In the case of metric trees, such a subset can be the entire graph.) In the convex case we find that the minimizing and maximizing potentials are piecewise linear with only a finite number of points of non-smoothness, but give examples showing that the optimal potentials need not be constant. This is a significant departure from the usual scenarios on intervals and domains where the constant potential is typically minimizing. In the single-well case we show that the optimal potentials are piecewise constant with a finite number of jumps, and in both cases give an explicit estimate on the number of points of non-smoothness, respectively jumps, the minimizing potential can have. Furthermore, we show that, unlike on domains, it is not generally possible to find nontrivial bounds on the fundamental gap in terms of the diameter of the graph alone, within the given classes.
引用
收藏
页数:26
相关论文
共 40 条
[1]  
Ahrami M., 2022, Electron. J. Differ. Equ. Conf, V26, P1, DOI [10.58997/ejde.conf.26.a1, DOI 10.58997/EJDE.CONF.26.A1]
[2]   PROOF OF THE FUNDAMENTAL GAP CONJECTURE [J].
Andrews, Ben ;
Clutterbuck, Julie .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (03) :899-916
[3]  
[Anonymous], 2013, Perturbation Theory for Linear Operators
[4]   Spectral gaps of 1-D Robin Schrodinger operators with single-well potentials [J].
Ashbaugh, Mark S. ;
Kielty, Derek .
JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (09)
[5]  
ASHBAUGH MS, 1991, PAC J MATH, V147, P1
[6]   PERIODIC POTENTIALS WITH MINIMAL ENERGY-BANDS [J].
ASHBAUGH, MS ;
SVIRSKY, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 114 (01) :69-77
[7]   OPTIMAL LOWER BOUND FOR THE GAP BETWEEN THE 1ST 2 EIGENVALUES OF ONE-DIMENSIONAL SCHRODINGER-OPERATORS WITH SYMMETRIC SINGLE-WELL POTENTIALS [J].
ASHBAUGH, MS ;
BENGURIA, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 105 (02) :419-424
[8]   INTRINSIC ULTRACONTRACTIVITY AND EIGENFUNCTION ESTIMATES FOR SCHRODINGER-OPERATORS [J].
BANUELOS, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :181-206
[9]  
BERKOLAIKO G., 2013, INTRO QUANTUM GRAPHS, DOI [DOI 10.1090/SURV/186, 10.1090/surv/186]
[10]   SURGERY PRINCIPLES FOR THE SPECTRAL ANALYSIS OF QUANTUM GRAPHS [J].
Berkolaiko, Gregory ;
Kennedy, James B. ;
Kurasov, Pavel ;
Mugnolo, Delio .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (07) :5153-5197