Deep Plasma Proteomics with Data-Independent Acquisition: Clinical Study Protocol Optimization with a COVID-19 Cohort

被引:0
|
作者
Ward, Bradley [1 ,2 ,3 ]
Ruys, Sebastien Pyr Dit [1 ,2 ,3 ]
Balligand, Jean-Luc [1 ,4 ]
Belkhir, Leila [1 ,3 ,5 ]
Cani, Patrice D. [1 ,6 ,7 ,8 ]
Collet, Jean-Francois [1 ,9 ]
De Greef, Julien [1 ,5 ]
Dewulf, Joseph P. [1 ,3 ,11 ]
Gatto, Laurent [1 ,12 ]
Haufroid, Vincent [1 ,3 ,10 ]
Jodogne, Sebastien [1 ,13 ]
Kabamba, Benoit [1 ,8 ,14 ]
Lingurski, Maxime [1 ,2 ]
Yombi, Jean Cyr [1 ,5 ]
Vertommen, Didier [1 ]
Elens, Laure [1 ,2 ,3 ]
机构
[1] Catholic Univ Louvain, Louvain Drug Res Inst LDRI, Integrated PharmacoMetr PharmacoGen & Pharmacokine, UCLouvain, B-1200 Brussels, Belgium
[2] Catholic Univ Louvain, Louvain Drug Res Inst LDRI, Integrated Pharmacometr Pharmacogen & Pharmacokine, UCLouvain, B-1200 Brussels, Belgium
[3] Catholic Univ Louvain, Inst Rech Expt & Clin IREC, Louvain Ctr Toxicol & Appl Pharmacol LTAP, UCLouvain, B-1200 Brussels, Belgium
[4] Catholic Univ Louvain, WELBIO Walloon Excellence Life Sci & Biotechnol, Pole Pharmacol & Therapeut FATH, Clin Univ St Luc,Inst Rech Experimentale & Clin IR, B-1200 Brussels, Belgium
[5] Catholic Univ Louvain, Dept Internal Med, Clin Univ St Luc, UCLouvain, B-1200 Brussels, Belgium
[6] Catholic Univ Louvain, Louvain Drug Res Inst LDRI, Metab & Nutr Res Grp, UCLouvain, B-1200 Brussels, Belgium
[7] WEL Res Inst, WELBIO Dept, WELBIO Walloon Excellence Life Sci & Biotechnol, Ave Pasteur 6, B-1300 Wavre, Belgium
[8] Catholic Univ Louvain, Inst Expt & Clin Res IREC, UCLouvain, B-1200 Brussels, Belgium
[9] Catholic Univ Louvain, Duve Inst, WELBIO Walloon Excellence Life Sci & Biotechnol, UCLouvain, B-1200 Brussels, Belgium
[10] Catholic Univ Louvain, Dept Lab Med, Clin Univ St Luc, UCLouvain, B-1200 Brussels, Belgium
[11] Catholic Univ Louvain, Duve Inst, Dept Biochem, UCLouvain, B-1200 Brussels, Belgium
[12] Catholic Univ Louvain, Duve Inst, Computat Biol & Bioinformat Unit CBIO, UCLouvain, B-1200 Brussels, Belgium
[13] Catholic Univ Louvain, Inst Informat & Commun Technol Elect & Appl Math I, Comp Sci & Engn Dept INGI, UCLouvain, B-1348 Louvain La Neuve, Belgium
[14] Catholic Univ Louvain, Inst Rech Expt & Clin, Poole Microbiol, UCLouvain, B-1200 Brussels, Belgium
关键词
plasma proteomics; fractionation; data-independentacquisition; COVID-19; DIA-NN; biomarkers; deep proteome analysis; clinical proteomics; BIOMARKER DISCOVERY;
D O I
10.1021/acs.jproteome.4c00104
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Plasma proteomics is a precious tool in human disease research but requires extensive sample preparation in order to perform in-depth analysis and biomarker discovery using traditional data-dependent acquisition (DDA). Here, we highlight the efficacy of combining moderate plasma prefractionation and data-independent acquisition (DIA) to significantly improve proteome coverage and depth while remaining cost-efficient. Using human plasma collected from a 20-patient COVID-19 cohort, our method utilizes commonly available solutions for depletion, sample preparation, and fractionation, followed by 3 liquid chromatography-mass spectrometry/MS (LC-MS/MS) injections for a 360 min total DIA run time. We detect 1321 proteins on average per patient and 2031 unique proteins across the cohort. Differential analysis further demonstrates the applicability of this method for plasma proteomic research and clinical biomarker identification, identifying hundreds of differentially abundant proteins at biological concentrations as low as 47 ng/L in human plasma. Data are available via ProteomeXchange with the identifier PXD047901. In summary, this study introduces a streamlined, cost-effective approach to deep plasma proteome analysis, expanding its utility beyond classical research environments and enabling larger-scale multiomics investigations in clinical settings. Our comparative analysis revealed that fractionation, whether the samples were pooled or separate postfractionation, significantly improved the number of proteins quantified. This underscores the value of fractionation in enhancing the depth of plasma proteome analysis, thereby offering a more comprehensive landscape for biomarker discovery in diseases such as COVID-19.
引用
收藏
页码:3806 / 3822
页数:17
相关论文
共 50 条
  • [1] Deep learning approaches for data-independent acquisition proteomics
    Yang, Yi
    Lin, Ling
    Qiao, Liang
    EXPERT REVIEW OF PROTEOMICS, 2021, 18 (12) : 1031 - 1043
  • [2] Leveraging homologies for cross-species plasma proteomics in ungulates using data-independent acquisition
    Noor, Zainab
    Paramasivan, Selvam
    Ghodasara, Priya
    Chemonges, Saul
    Gupta, Rajesh
    Kopp, Steven
    Mills, Paul C.
    Ranganathan, Shoba
    Satake, Nana
    Sadowski, Pawel
    JOURNAL OF PROTEOMICS, 2022, 250
  • [3] Clinical applications of quantitative proteomics using targeted and untargeted data-independent acquisition techniques
    Meyer, Jesse G.
    Schilling, Birgit
    EXPERT REVIEW OF PROTEOMICS, 2017, 14 (05) : 419 - 429
  • [4] Optimizing and integrating depletion and precipitation methods for plasma proteomics through data-independent acquisition-mass spectrometry
    Zhou, Yue
    Zheng, Helong
    Tan, Zengqi
    Kang, Enci
    Xue, Peng
    Li, Xiang
    Guan, Feng
    JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES, 2024, 1235
  • [5] Comparison of Pairwise Venous and Fingertip Plasma Using Quantitative Proteomics Based on Data-Independent Acquisition
    Xu, Ganfei
    Lv, Jiacheng
    Huang, Mingjing
    Zhu, Lingli
    Tan, Subei
    Ding, Chen
    JOURNAL OF PROTEOME RESEARCH, 2023, 22 (04) : 1347 - 1358
  • [6] A comparative study of data-dependent acquisition and data-independent acquisition in proteomics analysis of clinical lung cancer tissues constrained by blood contamination
    Su, Tao
    Zhong, Yi
    Zeng, Weibiao
    Zhang, Yong
    Wang, Shisheng
    Cheng, Jingqiu
    Yang, Hao
    Wei, Yiping
    Gong, Meng
    PROTEOMICS CLINICAL APPLICATIONS, 2022, 16 (03)
  • [7] Optimization of Ultrafast Proteomics Using an LC-Quadrupole-Orbitrap Mass Spectrometer with Data-Independent Acquisition
    Ishikawa, Masaki
    Konno, Ryo
    Nakajima, Daisuke
    Gotoh, Mari
    Fukasawa, Keiko
    Sato, Hironori
    Nakamura, Ren
    Ohara, Osamu
    Kawashima, Yusuke
    JOURNAL OF PROTEOME RESEARCH, 2022, 21 (09) : 2085 - 2093
  • [8] Analysis of 1508 Plasma Samples by Capillary-Flow Data-Independent Acquisition Profiles Proteomics of Weight Loss and Maintenance
    Bruderer, Roland
    Muntel, Jan
    Muller, Sebastian
    Bernhard, Oliver M.
    Gandhi, Tejas
    Cominetti, Ornella
    Macron, Charlotte
    Carayol, Jerome
    Rinner, Oliver
    Astrup, Arne
    Saris, Wim H. M.
    Hager, Jorg
    Valsesia, Armand
    Dayon, Loic
    Reiter, Lukas
    MOLECULAR & CELLULAR PROTEOMICS, 2019, 18 (06) : 1242 - 1254
  • [9] Proteomics of exhaled breath condensate in lung cancer and controls using data-independent acquisition (DIA): a pilot study
    Ma, Lin
    Muscat, Joshua E.
    Sinha, Raghu
    Sun, Dongxiao
    Xiu, Guangli
    JOURNAL OF BREATH RESEARCH, 2021, 15 (02)
  • [10] Combining Deep Phenotyping of Serum Proteomics and Clinical Data via Machine Learning for COVID-19 Biomarker Discovery
    Beltrami, Antonio Paolo
    De Martino, Maria
    Dalla, Emiliano
    Malfatti, Matilde Clarissa
    Caponnetto, Federica
    Codrich, Marta
    Stefanizzi, Daniele
    Fabris, Martina
    Sozio, Emanuela
    D'Aurizio, Federica
    Pucillo, Carlo E. M.
    Sechi, Leonardo A.
    Tascini, Carlo
    Curcio, Francesco
    Foresti, Gian Luca
    Piciarelli, Claudio
    De Nardin, Axel
    Tell, Gianluca
    Isola, Miriam
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (16)