Dynamic Bubbling Balanced Proactive CO2 Capture and Reduction on a Triple-Phase Interface Nanoporous Electrocatalyst

被引:8
作者
Zhang, Wei [1 ,2 ]
Yu, Ao [1 ]
Mao, Haiyan [3 ,4 ]
Feng, Guangxia [5 ]
Li, Cheng [6 ,7 ]
Wang, Guanzhi [1 ,2 ]
Chang, Jinfa [1 ,2 ,8 ]
Halat, David [4 ]
Li, Zhao [1 ,2 ]
Yu, Weilai [3 ]
Shi, Yaping [5 ]
Liu, Shengwen
Fox, David W. [1 ,2 ]
Zhuang, Hao [4 ]
Cai, Angela [3 ]
Wu, Bing [4 ]
Joshua, Fnu [1 ,2 ]
Martinez, John R.
Zhai, Lei [1 ,2 ]
Gu, M. Danny [6 ]
Shan, Xiaonan [5 ]
Reimer, Jeffrey A. [9 ]
Cui, Yi [2 ]
Yang, Yang [1 ,10 ,11 ,12 ]
机构
[1] Univ Cent Florida, NanoSci Technol Ctr, Orlando, FL 32826 USA
[2] Univ Cent Florida, Dept Mat Sci & Engn, Orlando, FL 32826 USA
[3] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[4] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[5] Univ Houston, Elect & Comp Engn Dept, Houston, TX 77204 USA
[6] Eastern Inst Adv Study, Eastern Inst Technol, Ningbo 315200, Zhejiang, Peoples R China
[7] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England
[8] Northeast Normal Univ, Fac Chem, Minist Educ, Key Lab Polyoxometalate & Reticular Mat Chem, Changchun 130024, Peoples R China
[9] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[10] Univ Cent Florida, Dept Mat Sci & Engn, Orlando, FL 32826 USA
[11] Univ Cent Florida, Renewable Energy & Chem Transformat Cluster, Dept Chem, Orlando, FL 32826 USA
[12] Univ Cent Florida, Stephen W Hawking Ctr Micrograv Res & Educ, Orlando, FL 32826 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
OXIDATION-STATE; HIGH-EFFICIENCY; SNO2; ELECTROREDUCTION; MORPHOLOGY; CATALYSTS; CU;
D O I
10.1021/jacs.4c02786
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The formation and preservation of the active phase of the catalysts at the triple-phase interface during CO2 capture and reduction is essential for improving the conversion efficiency of CO2 electroreduction toward value-added chemicals and fuels under operational conditions. Designing such ideal catalysts that can mitigate parasitic hydrogen generation and prevent active phase degradation during the CO2 reduction reaction (CO2RR), however, remains a significant challenge. Herein, we developed an interfacial engineering strategy to build a new SnOx catalyst by invoking multiscale approaches. This catalyst features a hierarchically nanoporous structure coated with an organic F-monolayer that modifies the triple-phase interface in aqueous electrolytes, substantially reducing competing hydrogen generation (less than 5%) and enhancing CO2RR selectivity (similar to 90%). This rationally designed triple-phase interface overcomes the issue of limited CO2 solubility in aqueous electrolytes via proactive CO2 capture and reduction. Concurrently, we utilized pulsed square-wave potentials to dynamically recover the active phase for the CO2RR to regulate the production of C1 products such as formate and carbon monoxide (CO). This protocol ensures profoundly enhanced CO2RR selectivity (similar to 90%) compared with constant potential (similar to 70%) applied at -0.8 V (V vs RHE). We further achieved a mechanistic understanding of the CO2 capture and reduction processes under pulsed square-wave potentials via in situ Raman spectroscopy, thereby observing the potential-dependent intensity of Raman vibrational modes of the active phase and CO2RR intermediates. This work will inspire material design strategies by leveraging triple-phase interface engineering for emerging electrochemical processes, as technology moves toward electrification and decarbonization.
引用
收藏
页码:21335 / 21347
页数:13
相关论文
共 56 条
  • [1] Influence of Bubbles on the Energy Conversion Efficiency of Electrochemical Reactors
    Angulo, Andrea
    van der Linde, Peter
    Gardeniers, Han
    Modestino, Miguel
    Rivas, David Fernandez
    [J]. JOULE, 2020, 4 (03) : 555 - 579
  • [2] Insight into Catalytic Active Sites on TiO2/RuO2 and SnO2/RuO2 Alloys for Electrochemical CO2 Reduction to CO and Formic Acid
    Atrak, Narges
    Tayyebi, Ebrahim
    Skulason, Egill
    [J]. ACS CATALYSIS, 2023, 13 (08) : 5491 - 5501
  • [3] Mechanistic Insights into the Reduction of CO2 on Tin Electrodes using in Situ ATR-IR Spectroscopy
    Baruch, Maor F.
    Pander, James E., III
    White, James L.
    Bocarsly, Andrew B.
    [J]. ACS CATALYSIS, 2015, 5 (05): : 3148 - 3156
  • [4] Pulse check: Potential opportunities in pulsed electrochemical CO2 reduction
    Casebolt, Rileigh
    Levine, Kelsey
    Suntivich, Jin
    Hanrath, Tobias
    [J]. JOULE, 2021, 5 (08) : 1987 - 2026
  • [5] On the origin of the elusive first intermediate of CO2 electroreduction
    Chernyshova, Irina, V
    Somasundaran, Ponisseril
    Ponnurangam, Sathish
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (40) : E9261 - E9270
  • [6] Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction
    De Luna, Phil
    Quintero-Bermudez, Rafael
    Cao-Thang Dinh
    Ross, Michael B.
    Bushuyev, Oleksandr S.
    Todorovic, Petar
    Regier, Tom
    Kelley, Shana O.
    Yang, Peidong
    Sargent, Edward H.
    [J]. NATURE CATALYSIS, 2018, 1 (02): : 103 - 110
  • [7] Morphological analysis of nanocrystalline SnO2 for gas sensor applications
    Dieguez, A
    RomanoRodriguez, A
    Morante, JR
    Weimar, U
    SchweizerBerberich, M
    Gopel, W
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 1996, 31 (1-2) : 1 - 8
  • [8] The complete Raman spectrum of nanometric SnO2 particles
    Diéguez, A
    Romano-Rodríguez, A
    Vilà, A
    Morante, JR
    [J]. JOURNAL OF APPLIED PHYSICS, 2001, 90 (03) : 1550 - 1557
  • [9] Role of oxygen migration on the thermal stability of the perpendicular magnetic anisotropy in bottom and top structures
    Du, Wei
    Liu, Mengli
    Han, Fengxuan
    Su, Hua
    Zhang, Huaiwu
    Liu, Bo
    Meng, Hao
    Tang, Xiaoli
    [J]. APL MATERIALS, 2022, 10 (01)
  • [10] Monitoring the Chemical State of Catalysts for CO2 Electroreduction: An In Operando Study
    Dutta, Abhijit
    Kuzume, Akiyoshi
    Rahaman, Motiar
    Vesztergom, Soma
    Broekmann, Peter
    [J]. ACS CATALYSIS, 2015, 5 (12): : 7498 - 7502