Mitigation of Drought Stress for Quinoa (Chenopodium quinoa Willd.) Varieties Using Woodchip Biochar-Amended Soil

被引:2
|
作者
Akram, Muhammad Zubair [1 ,2 ,3 ]
Rivelli, Anna Rita [2 ]
Libutti, Angela [4 ]
Liu, Fulai [3 ]
Andreasen, Christian [3 ]
机构
[1] Univ Basilicata, Ph D Program Agr Forest & Food Sci, Via Ateneo Lucano 10, I-85100 Potenza, Italy
[2] Univ Basilicata, Sch Agr Forest Food & Environm Sci, Via Ateneo Lucano 10, I-85100 Potenza, Italy
[3] Univ Copenhagen, Dept Plant & Environm Sci, Hojbakkegaard Allee 13, DK-2630 Taastrup, Denmark
[4] Univ Foggia, Dept Agr Sci Food Nat Resources & Engn DAFNE, Via Napoli 25, I-71122 Foggia, Italy
来源
PLANTS-BASEL | 2024年 / 13卷 / 16期
关键词
drought resistance; drought tolerance; physiological parameters; morphological attributes; root traits; soil amendments; GROWTH; NUTRIENTS; TOLERANCE; QUALITY; PLANTS;
D O I
10.3390/plants13162279
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Drought stress deteriorates agro-ecosystems and poses a significant threat to crop productivity and food security. Soil amended with biochar has been suggested to mitigate water stress, but there is limited knowledge about how biochar affects the physiology and vegetative growth of quinoa plants under soil water deficits. We grew three quinoa (Chenopodium quinoa Willd.) varieties, Titicaca (V1), Quipu (V2), and UAFQ7 (V3) in sandy loam soil without (B0) and with 2% woodchip biochar (B2) under drought conditions. The drought resulted in significant growth differences between the varieties. V3 performed vegetatively better, producing 46% more leaves, 28% more branches, and 25% more leaf area than the other two varieties. Conversely, V2 displayed significantly higher yield-contributing traits, with 16% increment in panicle length and 50% more subpanicles compared to the other varieties. Woodchip biochar application significantly enhanced the root development (i.e., root biomass, length, surface, and projected area) and plant growth (i.e., plant height, leaf area, and absolute growth rate). Biochar significantly enhanced root growth, especially fresh and dry weights, by 122% and 127%, respectively. However, biochar application may lead to a trade-off between vegetative growth and panicle development under drought stress as shown for V3 grown in soil with woodchip biochar. However, V3B2 produced longer roots and more biomass. Collectively, we suggest exploring the effects of woodchip biochar addition to the soil on the varietal physiological responses such as stomatal regulations and mechanisms behind the increased quinoa yield under water stress conditions.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Hydration kinetics of four quinoa (Chenopodium quinoa Willd.) varieties
    Pumacahua Ramos, Augusto
    Limaylla Guerrero, Katherine Milusca
    Romero, Javier Telis
    Lopes Filho, Jose Francisco
    REVISTA COLOMBIANA DE INVESTIGACIONES AGROINDUSTRIALES, 2016, 3 : 23 - 33
  • [2] Mitigating Salinity Stress in Quinoa (Chenopodium quinoa Willd.) with Biochar and Superabsorber Polymer Amendments
    Derbali, Imed
    Derbali, Walid
    Gharred, Jihed
    Manaa, Arafet
    Slama, Ines
    Koyro, Hans-Werner
    PLANTS-BASEL, 2024, 13 (01):
  • [3] Physiological and Morphological Responses of two Quinoa Cultivars (Chenopodium quinoa Willd.) to Drought Stress
    Ali, Oudou Issa
    Fghire, Rachid
    Anaya, Fatima
    Benlhabib, Ouafae
    Wahbi, Said
    GESUNDE PFLANZEN, 2019, 71 (02): : 123 - 133
  • [4] Silicon mitigates nutritional stress in quinoa (Chenopodium quinoa Willd.)
    Ana Carolina Sales
    Cid Naudi Silva Campos
    Jonas Pereira de Souza Junior
    Dalila Lopes da Silva
    Kamilla Silva Oliveira
    Renato de Mello Prado
    Larissa Pereira Ribeiro Teodoro
    Paulo Eduardo Teodoro
    Scientific Reports, 11
  • [5] Silicon mitigates nutritional stress in quinoa (Chenopodium quinoa Willd.)
    Sales, Ana Carolina
    Silva Campos, Cid Naudi
    de Souza Junior, Jonas Pereira
    da Silva, Dalila Lopes
    Oliveira, Kamilla Silva
    de Mello Prado, Renato
    Ribeiro Teodoro, Larissa Pereira
    Teodoro, Paulo Eduardo
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [6] Biochar Reduces Copper Toxicity in Chenopodium quinoa Willd. in a Sandy Soil
    Buss, Wolfram
    Kammann, Claudia
    Koyro, Hans-Werner
    JOURNAL OF ENVIRONMENTAL QUALITY, 2012, 41 (04) : 1157 - 1165
  • [7] Physiological, Biochemical, and Molecular Responses of Quinoa (Chenopodium quinoa Willd.) to Elicitors Under Drought Stress
    Forouzandeh, Mohamad
    Parsa, Soheil
    Mahmoodi, Sohrab
    Izanloo, Ali
    PLANT MOLECULAR BIOLOGY REPORTER, 2024, 42 (03) : 515 - 531
  • [8] Integrating transcriptomics and metabolomics to analyze quinoa (Chenopodium quinoa Willd.) responses to drought stress and rewatering
    Huan, Xiuju
    Li, Li
    Liu, Yongjiang
    Kong, Zhiyou
    Liu, Yeju
    Wang, Qianchao
    Liu, Junna
    Zhang, Ping
    Guo, Yirui
    Qin, Peng
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [9] Physiological and Morphological Responses of two Quinoa Cultivars (Chenopodium quinoa Willd.) to Drought Stress; [Physiologische und morphologische Reaktionen zweier Quinoa-Sorten (Chenopodium quinoa Willd.) auf Trockenstress]
    Issa Ali O.
    Fghire R.
    Anaya F.
    Benlhabib O.
    Wahbi S.
    Gesunde Pflanzen, 2019, 71 (2): : 123 - 133
  • [10] Molecular mechanisms regulating glucose metabolism in quinoa (Chenopodium quinoa Willd.) seeds under drought stress
    Wang, Chunmei
    Lu, Chuan
    Wang, Junling
    Liu, Xiaoqing
    Wei, Zhimin
    Qin, Yan
    Zhang, Huilong
    Wang, Xiaoxia
    Wei, Boxiang
    Lv, Wei
    Mu, Guojun
    BMC PLANT BIOLOGY, 2024, 24 (01):