Extremal values-based aggregation functions

被引:0
作者
Halas, Radomir [1 ]
Mesiar, Radko [1 ,2 ]
Kolesarova, Anna [2 ]
Saadati, Reza [3 ]
Herrera, Francisco [4 ]
Rodriguez-Martinez, Iosu [5 ]
Bustince, Humberto [5 ,6 ]
机构
[1] Palacky Univ Olomouc, Fac Sci, Dept Algebra & Geometry, Olomouc, Czech Republic
[2] Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Math & Descript Geometry, Radlinskeho 11, Bratislava 81005, Slovakia
[3] Iran Univ Sci & Technol, Sch Math, Tehran, Iran
[4] Univ Granada, Andalusian Res Inst Data Sci & Computat Intelligen, Granada 18071, Spain
[5] Univ Publ Navarra, Dept Estadist Informat & Matemat, Campus Arrosadia S-N, Pamplona 31006, Spain
[6] Univ Publ Navarra, Inst Smart Cities, Campus Arrosadia S-N, Pamplona 31006, Spain
关键词
Aggregation function; Choquet integral; Classification; Extended aggregation function; Ordered weighted quasi-arithmetic mean; Sugeno integral; t-conorm; t-norm; Symmetric discrete fuzzy measure; INTEGRALS; CHOQUET;
D O I
10.1016/j.fss.2024.109097
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce and study aggregation functions based on extremal values, namely extended (l, u)-aggregation functions whose outputs only depend on a fixed number l of extremal lower input values and a fixed number u of extremal upper input values, independently of the arity of the input n-tuples (n >= l + u). We discuss several general properties of (l, u)-aggregation functions and we study special (l, u)-aggregation functions with neutral element, including t-conorms, t-norms and uninorms. We also study (l, u)-aggregation functions defined by means of integrals with respect to discrete fuzzy measures, as well as (l, u)-ordered weighted quasi-arithmetic means based on appropriate weighting vectors. We also stress some generalizations based on recently introduced new types of monotonicity. Some possible applications are sketched, too.
引用
收藏
页数:16
相关论文
共 37 条
  • [1] Alsina C, 2006, ASSOCIATIVE FUNCTIONS: TRIANGULAR NORMS AND COPULAS, P1, DOI 10.1142/9789812774200
  • [2] Beliakov G., 2007, Aggregation Functions: A Guide for Practitioners
  • [3] Cardinality-limiting extended pre-aggregation functions
    Beliakov, Gleb
    James, Simon
    Kolesarova, Anna
    Mesiar, Radko
    [J]. INFORMATION FUSION, 2021, 76 : 66 - 74
  • [4] Birkhoff G., 1973, LATTICE THEORY
  • [5] Directional monotonicity of fusion functions
    Bustince, H.
    Fernandez, J.
    Kolesarova, A.
    Mesiar, R.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2015, 244 (01) : 300 - 308
  • [6] Calvo T, 2002, STUD FUZZ SOFT COMP, V97, P3
  • [7] The functional equations of Frank and Alsina for uninorms and nullnorms
    Calvo, T
    De Baets, B
    Fodor, J
    [J]. FUZZY SETS AND SYSTEMS, 2001, 120 (03) : 385 - 394
  • [8] Choquet G., 1954, Ann. lInstitut Fourier, V5, P131, DOI [10.5802/aif.53, DOI 10.5802/AIF.53]
  • [9] Deviation-based aggregation functions
    Decky, Marian
    Mesiar, Radko
    Stupnanova, Andrea
    [J]. FUZZY SETS AND SYSTEMS, 2018, 332 : 29 - 36
  • [10] A REVIEW OF FUZZY SET AGGREGATION CONNECTIVES
    DUBOIS, D
    PRADE, H
    [J]. INFORMATION SCIENCES, 1985, 36 (1-2) : 85 - 121