Ground-state solutions of a Hartree-Fock type system involving critical Sobolev exponent

被引:0
作者
Zhu, Xiaoli [1 ]
Min, Zushun [1 ]
机构
[1] Shanxi Univ, Sch Math & Stat, Taiyuan 030006, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Hartree-Fock systems; ground-state solutions; critical growth; EQUATIONS;
D O I
10.14232/ejqtde.2024.1.51
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, ground-state solutions to a Hartree-Fock type system with a critical growth are studied. Firstly, instead of establishing the local Palais-Smale (P.- S.) condition and estimating the mountain-pass critical level, a perturbation method is used to recover compactness and obtain the existence of ground-state solutions. To achieve this, an important step is to get the right continuity of the mountain-pass level on the coefficient in front of perturbing terms. Subsequently, depending on the internal parameters of coupled nonlinearities, whether the ground state is semi-trivial or vectorial is proved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条