The Role of Artificial Intelligence and Machine Learning in Cardiovascular Imaging and Diagnosis

被引:6
作者
Reza-Soltani, Setareh [1 ]
Alam, Laraib Fakhare [2 ]
Debellotte, Omofolarin [3 ]
Monga, Tejbir S. [4 ]
Coyalkar, Vaishali Raj [5 ]
Tarnate, Victoria Clarice A. [6 ]
Ozoalor, Chioma Ugochinyere [7 ]
Allam, Sanjana Reddy [8 ]
Afzal, Maham [9 ]
Shah, Gunjan Kumari [10 ]
Rai, Manju [11 ]
机构
[1] Univ Tehran Med Sci, Adv Diagnost & Intervent Radiol Ctr ADIR, Tehran, Iran
[2] Minist Hlth, Internal Med, Kuwait, Kuwait
[3] One Brooklyn Hlth, Brookdale Hosp Med Ctr, Internal Med, Brooklyn, NY USA
[4] Spartan Hlth Sci Univ, Internal Med, Vieux Fort, St Lucia
[5] Malla Reddy Inst Med Sci, Radiodiag, Hyderabad, Pakistan
[6] Far Eastern Univ, Dr Nicanor Reyes Med Fdn, Med, Quezon City, Philippines
[7] Worcestershire Royal Hosp, Internal Med, Worcester, England
[8] Gandhi Med Coll, Internal Med, Secunderabad, India
[9] Fatima Jinnah Med Univ, Med, Lahore, Pakistan
[10] Janaki Med Coll, Internal Med, Janakpurdham, Nepal
[11] Shri Venkateshwara Univ, Biotechnol, Gajraula, India
关键词
personalized medicine; cardiomyopathy; coronary artery disease; diagnostic accuracy; magnetic resonance imaging; computed tomography; echocardiography; cardiovascular imaging; machine learning; artificial intelligence; CORONARY-ARTERY-DISEASE; MYOCARDIAL-PERFUSION; CT ANGIOGRAPHY; PREDICTION;
D O I
10.7759/cureus.68472
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Cardiovascular diseases remain the leading cause of global mortality, underscoring the critical need for accurate and timely diagnosis. This narrative review examines the current applications and future potential of artificial intelligence (AI) and machine learning (ML) in cardiovascular imaging. We discuss the integration of these technologies across various imaging modalities, including echocardiography, computed tomography, magnetic resonance imaging, and nuclear imaging techniques. The review explores AI-assisted diagnosis in key areas such as coronary artery disease detection, valve disorders assessment, cardiomyopathy classification, arrhythmia detection, and prediction of cardiovascular events. AI demonstrates promise in improving diagnostic accuracy, efficiency, and personalized care. However, considerations, and clinical workflow integration. We also address the limitations of current AI applications and the ethical implications of their implementation in clinical practice. Future directions point towards advanced AI architectures, multimodal imaging integration, and applications in precision medicine and population health management. The review emphasizes the need for ongoing collaboration between clinicians, data scientists, and policymakers to realize the full potential of AI in cardiovascular imaging while ensuring ethical and equitable implementation. As the field continues to evolve, addressing these challenges will be crucial for the successful integration of AI technologies into cardiovascular care, potentially revolutionizing diagnostic capabilities and improving patient outcomes.
引用
收藏
页数:12
相关论文
共 50 条
[31]   Artificial Intelligence/Machine Learning in Respiratory Medicine and Potential Role in Asthma and COPD Diagnosis [J].
Kaplan, Alan ;
Cao, Hui ;
FitzGerald, J. Mark ;
Iannotti, Nick ;
Yang, Eric ;
Kocks, Janwillem W. H. ;
Kostikas, Konstantinos ;
Price, David ;
Reddel, Helen K. ;
Tsiligianni, Ioanna ;
Vogelmeier, Claus F. ;
Pfister, Pascal ;
Mastoridis, Paul .
JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE, 2021, 9 (06) :2255-2261
[32]   Applications of artificial intelligence and machine learning approaches in echocardiography [J].
Nabi, Wafa ;
Bansal, Agam ;
Xu, Bo .
ECHOCARDIOGRAPHY-A JOURNAL OF CARDIOVASCULAR ULTRASOUND AND ALLIED TECHNIQUES, 2021, 38 (06) :982-992
[33]   Machine learning and artificial intelligence in haematology [J].
Shouval, Roni ;
Fein, Joshua A. ;
Savani, Bipin ;
Mohty, Mohamad ;
Nagler, Arnon .
BRITISH JOURNAL OF HAEMATOLOGY, 2021, 192 (02) :239-250
[34]   Role of Machine Learning and Artificial Intelligence in Interventional Oncology [J].
Brian D’Amore ;
Sara Smolinski-Zhao ;
Dania Daye ;
Raul N. Uppot .
Current Oncology Reports, 2021, 23
[35]   Role of Machine Learning and Artificial Intelligence in Interventional Oncology [J].
D'Amore, Brian ;
Smolinski-Zhao, Sara ;
Daye, Dania ;
Uppot, Raul N. .
CURRENT ONCOLOGY REPORTS, 2021, 23 (06)
[36]   Artificial Intelligence in Cardiovascular Imaging: Current Applications and New Horizons [J].
Baggiano, Andrea ;
Mushtaq, Saima ;
Fusini, Laura ;
Muratori, Manuela ;
Pontone, Gianluca ;
Pepi, Mauro .
JOURNAL OF CARDIOVASCULAR ECHOGRAPHY, 2025, 35 (02) :97-107
[37]   Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future [J].
Iqbal, Muhammad Javed ;
Javed, Zeeshan ;
Sadia, Haleema ;
Qureshi, Ijaz A. ;
Irshad, Asma ;
Ahmed, Rais ;
Malik, Kausar ;
Raza, Shahid ;
Abbas, Asif ;
Pezzani, Raffaele ;
Sharifi-Rad, Javad .
CANCER CELL INTERNATIONAL, 2021, 21 (01)
[38]   Artificial Intelligence in Cardiovascular CT and MR Imaging [J].
Lanzafame, Ludovica R. M. ;
Bucolo, Giuseppe M. M. ;
Muscogiuri, Giuseppe ;
Sironi, Sandro ;
Gaeta, Michele ;
Ascenti, Giorgio ;
Booz, Christian ;
Vogl, Thomas J. J. ;
Blandino, Alfredo ;
Mazziotti, Silvio ;
D'Angelo, Tommaso .
LIFE-BASEL, 2023, 13 (02)
[39]   Clinical Application of Machine Learning-Based Artificial Intelligence in the Diagnosis, Prediction, and Classification of Cardiovascular Diseases [J].
Shu, Songren ;
Ren, Jie ;
Song, Jiangping .
CIRCULATION JOURNAL, 2021, 85 (09) :1416-1425
[40]   Artificial intelligence and machine learning in oncologic imaging [J].
Kleesiek, Jens ;
Murray, Jacob M. ;
Strack, Christian ;
Prinz, Sebastian ;
Kaissis, Georgios ;
Braren, Rickmer .
PATHOLOGE, 2020, 41 (06) :649-658