Video anomaly detection with both normal and anomaly memory modules

被引:0
作者
Zhang, Liang [1 ]
Li, Shifeng [1 ]
Luo, Xi [1 ]
Liu, Xiaoru [1 ]
Zhang, Ruixuan [2 ]
机构
[1] BoHai Univ, Coll Informat Sci & Technol, Jin Shan St, Jinzhou 121010, Peoples R China
[2] Hikvision Res Inst, Qian Mo St, Hangzhou 310052, Peoples R China
基金
中国国家自然科学基金;
关键词
Video anomaly detection; Pseudo-anomaly; Memory module;
D O I
10.1007/s00371-024-03584-z
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we propose a novel framework for video anomaly detection that employs dual memory modules for both normal and anomaly patterns. By maintaining separate memory modules, one for normal patterns and one for anomaly patterns, our approach captures a broader range of video data behaviors. By exploring separate memory modules for normal and anomaly patterns, we begin by generating pseudo-anomalies using a temporal pseudo-anomaly synthesizer. This data is then used to train the anomaly memory module, while normal data trains the normal memory module. To distinguish between normal and anomalous data, we introduce a loss function that computes memory loss between the two memory modules. We enhance the memory modules by incorporating entropy loss and a hard shrinkage rectified linear unit (ReLU). Additionally, we integrate skip connections within our model to ensure the memory module captures comprehensive patterns beyond prototypical representations. Extensive experimentation and analysis on various challenging video anomaly datasets validate the effectiveness of our approach in detecting anomalies. The code for our method is available at https://github.com/SVIL2024/Pseudo-Anomaly-MemAE.
引用
收藏
页码:3003 / 3015
页数:13
相关论文
共 44 条
  • [1] Latent Space Autoregression for Novelty Detection
    Abati, Davide
    Porrello, Angelo
    Calderara, Simone
    Cucchiara, Rita
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 481 - 490
  • [2] Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection
    Astrid, Marcella
    Zaheer, Muhammad Zaigham
    Lee, Seung-Ik
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 207 - 214
  • [3] Chen YQ, 2001, IEEE IMAGE PROC, P34, DOI 10.1109/ICIP.2001.958946
  • [4] Learning Spatiotemporal Features with 3D Convolutional Networks
    Du Tran
    Bourdev, Lubomir
    Fergus, Rob
    Torresani, Lorenzo
    Paluri, Manohar
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4489 - 4497
  • [5] Video anomaly detection and localization via Gaussian Mixture Fully Convolutional Variational Autoencoder
    Fan, Yaxiang
    Wen, Gongjian
    Li, Deren
    Qiu, Shaohua
    Levine, Martin D.
    Xiao, Fei
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2020, 195
  • [6] A Background-Agnostic Framework With Adversarial Training for Abnormal Event Detection in Video
    Georgescu, Mariana Iuliana
    Ionescu, Radu Tudor
    Khan, Fahad Shahbaz
    Popescu, Marius
    Shah, Mubarak
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 4505 - 4523
  • [7] Golan I., 2018, NIPS'18: Proceedings of the 32nd International Conference on Neural Information Processing Systems, P9781
  • [8] Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
    Gong, Dong
    Liu, Lingqiao
    Le, Vuong
    Saha, Budhaditya
    Mansour, Moussa Reda
    Venkatesh, Svetha
    van den Hengel, Anton
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1705 - 1714
  • [9] MPTV: Matching Pursuit-Based Total Variation Minimization for Image Deconvolution
    Gong, Dong
    Tan, Mingkui
    Shi, Qinfeng
    van den Hengel, Anton
    Zhang, Yanning
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (04) : 1851 - 1865
  • [10] Blind Image Deconvolution by Automatic Gradient Activation
    Gong, Dong
    Tan, Mingkui
    Zhang, Yanning
    van den Hengel, Anton
    Shi, Qinfeng
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 1827 - 1836