Exploiting Machine Learning Technique for Attack Detection in Intrusion Detection System (IDS) Based on Protocol

被引:0
|
作者
Aladesote, Olomi Isaiah [1 ]
Fakoya, Johnson Tunde [1 ]
Agbelusi, Olutola [2 ]
机构
[1] Fed Polytech, Dept Comp Sci, Ile Oluji, Ondo, Nigeria
[2] Fed Univ Technol Akure, Dept Software Engn, Akure, Ondo, Nigeria
关键词
Correlation-based feature selection; Intrusion Detection System; NSL-KDD dataset;
D O I
10.1007/978-3-031-51664-1_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An intrusion detection system (IDS) can be either software or hardware that computerizes the process of keeping track of and evaluating network or computer system activity for indications of security issues. IDS is a crucial component of the security infrastructure of many organizations due to an increase in the frequency and intensity of attackers over the past decades. The study proposes machine learning techniques for the classification and detection of normal and attack traffics using protocol types records of the NSL-KDD dataset. Three sets of datasets were extracted from NSL-KDD datasets based on ICMP, UDP, and TCP. The experiment was conducted on WEKA 3.8.5 using KNN, KStar, LWL, BayesNet, Naive Bayes, and PART algorithms. The results indicated that the PART algorithm has the highest performance rating while NaiveBayes has the lowest performance rating utilizing the Correlation-based feature selection (CFS) using the Ranking Filter approach. It is concluded that the PART algorithm performs well across the dataset while NaiveBayes does not perform well across the dataset.
引用
收藏
页码:158 / 167
页数:10
相关论文
共 50 条
  • [1] Intrusion Detection System: A Comparative Study of Machine Learning-Based IDS
    Singh, Amit
    Prakash, Jay
    Kumar, Gaurav
    Jain, Praphula Kumar
    Ambati, Loknath Sai
    JOURNAL OF DATABASE MANAGEMENT, 2024, 35 (01)
  • [2] Blockchain Assisted Fireworks Optimization with Machine Learning based Intrusion Detection System (IDS)
    Thiruvenkatasamy, Sudhakar
    Sivaraj, Rajappan
    Vijayakumar, Murugasamy
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2024, 31 (02): : 596 - 603
  • [3] QML-IDS: Quantum Machine Learning Intrusion Detection System
    Abreu, Diego
    Rothenberg, Christian Esteve
    Abelem, Antonio
    2024 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS, ISCC 2024, 2024,
  • [4] Machine Learning and Deep Learning Architectures for Intrusion Detection System (IDS): A Survey
    Thankappan, Manesh
    Narayanan, Nikhil
    Sanaj, M.S.
    Manoj, Anusha
    Menon, Aravind P.
    Gokul Krishna, M.
    2024 1st International Conference on Trends in Engineering Systems and Technologies, ICTEST 2024, 2024,
  • [5] HYBRID MACHINE LEARNING TECHNIQUE FOR INTRUSION DETECTION SYSTEM
    Tahir, Hatim Mohamad
    Hasan, Wael
    Said, Abas Md
    Zakaria, Nur Haryani
    Katuk, Norliza
    Kabir, Nur Farzana
    Omar, Mohd Hasbullah
    Ghazali, Osman
    Yahya, Noor Izzah
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON COMPUTING & INFORMATICS, 2015, : 464 - 472
  • [6] Intrusion detection system based on machine learning
    Wang, Xu-Ren
    Xu, Rong-Sheng
    Jisuanji Gongcheng/Computer Engineering, 2006, 32 (14): : 107 - 108
  • [7] Web Attack Intrusion Detection System Using Machine Learning Techniques
    Baklizi, Mahmoud Khalid
    Atoum, Issa
    Alkhazaleh, Mohammad
    Kanaker, Hasan
    Abdullah, Nibras
    Al-Wesabi, Ola A.
    Otoom, Ahmed Ali
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2024, 20 (03) : 24 - 38
  • [8] DDoS Attack Detection Using Hybrid Machine Learning Based IDS Models
    Sumathi, S.
    Rajesh, R.
    Karthikeyan, N.
    JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 2022, 81 (03): : 276 - 286
  • [9] Optimal feature selection for machine learning based intrusion detection system by exploiting attribute dependence
    Dubey, Ghanshyam Prasad
    Bhujade, Rakesh Kumar
    MATERIALS TODAY-PROCEEDINGS, 2021, 47 : 6325 - 6331
  • [10] Machine learning based intrusion detection system for IoMT
    Kulshrestha, Priyesh
    Vijay Kumar, T. V.
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024, 15 (05) : 1802 - 1814