Moments of Artin-Schreier L-functions

被引:0
作者
Florea, Alexandra
Jones, Edna
Lalin, Matilde [1 ]
机构
[1] UC Irvine, Dept Math, 340 Rowland Hall,Off 540E, Irvine, CA 92697 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
DIRICHLET L-FUNCTIONS; RANDOM-MATRIX THEORY; HIGH POWERS; FROBENIUS CLASS; 4TH MOMENT; HYPERELLIPTIC CURVES; SHORT INTERVALS; ZETA-FUNCTIONS; ZEROS; STATISTICS;
D O I
10.1093/qmath/haae045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute moments of L-functions associated to the polynomial family of Artin-Schreier covers over F-q , where q is a power of a prime p > 2, when the size of the finite field is fixed and the genus of the family goes to infinity. More specifically, we compute the k th moment for a large range of values of k , depending on the sizes ofp p and q . We also compute the second moment in absolute value of the polynomial family, obtaining an exact formula with a lower order term, and confirming the unitary symmetry type of the family.
引用
收藏
页码:1255 / 1284
页数:30
相关论文
共 47 条
  • [1] The mean value of L(1/2, χ) in the hyperelliptic ensemble
    Andrade, J. C.
    Keating, J. P.
    [J]. JOURNAL OF NUMBER THEORY, 2012, 132 (12) : 2793 - 2816
  • [2] Zeros of Dirichlet L-functions over function fields
    Andrade, Julio C.
    Miller, Steven J.
    Pratt, Kyle
    Trinh, Minh-Tam
    [J]. COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2014, 8 (03) : 511 - 539
  • [3] [Anonymous], 1999, Amer. Math. Soc. Colloq. Publ.
  • [4] Statistics for products of traces of high powers of the Frobenius class of hyperelliptic curves in even characteristic
    Bae, Sunghan
    Jung, Hwanyup
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (07) : 1519 - 1530
  • [5] Bergstrom A., 2023, ARXIV
  • [6] Traces, high powers and one level density for families of curves over finite fields
    Bucur, Alina
    Costa, Edgar
    David, Chantal
    Guerreiro, Joao
    Lowry-Duda, David
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2018, 165 (02) : 225 - 248
  • [7] The Distribution of Fq-Points on Cyclic l-Covers of Genus g
    Bucur, Alina
    David, Chantal
    Feigon, Brooke
    Kaplan, Nathan
    Lalin, Matilde
    Ozman, Ekin
    Wood, Melanie Matchett
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (14) : 4297 - 4340
  • [8] STATISTICS FOR ORDINARY ARTIN-SCHREIER COVERS AND OTHER p-RANK STRATA
    Bucur, Alina
    David, Chantal
    Feigon, Brooke
    Lalin, Matilde
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (04) : 2371 - 2413
  • [9] Statistics for Traces of Cyclic Trigonal Curves over Finite Fields
    Bucur, Alina
    David, Chantal
    Feigon, Brooke
    Lalin, Matilde
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (05) : 932 - 967
  • [10] Bucur A, 2012, MATH RES LETT, V19, P1329