Improving the fatigue life of laser powder bed fusion Scalmalloy® by friction stir processing

被引:1
|
作者
van der Rest, Camille [1 ]
De Raedemacker, Sophie [1 ]
Avettand-Fenoel, Marie-Noelle [2 ]
Pyka, Grzegorz [1 ]
Cocle, Roger [3 ]
Simar, Aude [1 ]
机构
[1] Univ Catholique Louvain UCLouvain, Inst Mech Mat & Civil Engn iMMC, IMAP, Pl St Barbe 2 Bte L5 02-02, B-1348 Louvain La Neuve, Belgium
[2] Univ Lille, UMET Unite Mat & Transformat, UMR 8207, CNRS,INRAE,Cent Lille, F-59000 Lille, France
[3] AnyShape SA, Addit Mfg Innovat, Rue Technol 1, B-4530 Villers Le Bouillet, Belgium
关键词
Laser powder bed fusion; Friction stir processing; High-strength Al alloy; Scalmalloy (R); Fatigue; MECHANICAL-PROPERTIES; SC; ALLOY; PRECIPITATION; MICROSTRUCTURE; RECRYSTALLIZATION; SCANDIUM; STRENGTH; BEHAVIOR;
D O I
10.1016/j.matdes.2024.113193
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A major concern about parts produced by laser powder bed fusion (L-PBF) are intrinsic defects or porosities that are difficult to overcome by simply optimizing the process parameters. As these defects and porosities play a crucial role in the mechanical behaviour, especially in fatigue, additive manufactured parts are often subjected to thermo-mechanical post-treatments. To this end, this work proves Friction Stir Processing (FSP) to be an effective post-treatment to drastically reduce the porosity level. FSP leads to an improvement of 60 % of the technical fatigue strength and by two orders of magnitude of the fatigue life of L-PBF Scalmalloy (R) specimens. The fatigue performances obtained on FSPed and heat-treated specimens are equivalent or even better than the best fatigue life reported in the literature, whatever their L-PBF conditions and post-treatments, while avoiding Hot Isostatic Pressing. However, FSP reduces the beneficial effect of the conventional strengthening heat-treatment applied to L-PBF Scalmalloy (R), lowering the high tensile strength for which the alloy is normally reputed. Advanced characterisation by X-ray microtomography and Transmission Electron Microscopy allows us to reach a better understanding of the involved phenomena: drastic reduction of the biggest defects and heterogeneous nucleation of Sc- and Zr-rich precipitates on grain boundaries and dislocations.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Effect of friction stir processing on the tensile and fatigue behavior of a cast A206 alloy
    Kapoor, R.
    Kandasamy, K.
    Mishra, R. S.
    Baumann, J. A.
    Grant, G.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 561 : 159 - 166
  • [22] Effective parameters on the fatigue life of metals processed by powder bed fusion technique: A short review
    Afkhami, Shahriar
    Piili, Heidi
    Salminen, Antti
    Bjork, Timo
    17TH NORDIC LASER MATERIALS PROCESSING CONFERENCE (NOLAMP17), 2019, 36 : 3 - 10
  • [23] Laser powder bed fusion of pure copper electrodes
    Aghayar, Yahya
    Moazzen, Parisa
    Behboodi, Behrang
    Shahriari, Ayda
    Shakerin, Sajad
    Lloyd, Alan
    Mohammadi, Mohsen
    MATERIALS & DESIGN, 2024, 239
  • [24] On the role of building orientation and surface post-processes on the fatigue life of Ti-6Al-4V coupons manufactured by laser powder bed fusion
    Cutolo, Antonio
    Elangeswaran, Chola
    Muralidharan, Gokula Krishna
    Van Hooreweder, Brecht
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 840
  • [25] Predictive models for fatigue property of laser powder bed fusion stainless steel 316L
    Zhang, Meng
    Sun, Chen-Nan
    Zhang, Xiang
    Wei, Jun
    Hardacre, David
    Li, Hua
    MATERIALS & DESIGN, 2018, 145 : 42 - 54
  • [26] Laser Powder Bed Fusion of Powder Material: A Review
    Zhao, Xi
    Wang, Tong
    3D PRINTING AND ADDITIVE MANUFACTURING, 2023, 10 (06) : 1439 - 1454
  • [27] Grain refinement in laser powder bed fusion: The influence of dynamic recrystallization and recovery
    Sabzi, Hossein Eskandari
    Aboulkhair, Nesma T.
    Liang, Xingzhong
    Li, Xiao-Hui
    Simonelli, Marco
    Fu, Hanwei
    Rivera-Diaz-del-Castillo, Pedro E. J.
    MATERIALS & DESIGN, 2020, 196 (196)
  • [28] Development of Laser Powder Bed Fusion Processing Parameters for Aermet 100 Powder
    Jelis, Elias
    Hespos, Michael R. R.
    Feurer, Matthew
    Groeschler, Shana
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2023, 32 (16) : 7195 - 7203
  • [29] Influence of post-processing on very high cycle fatigue resistance of Inconel 718 obtained with laser powder bed fusion
    Yu, Chuanli
    Huang, Zhiyong
    Zhang, Zian
    Shen, Jiebin
    Wang, Jian
    Xu, Zhiping
    INTERNATIONAL JOURNAL OF FATIGUE, 2021, 153
  • [30] Effect of Post-Processing Treatment on Fatigue Performance of Ti6Al4V Alloy Manufactured by Laser Powder Bed Fusion
    Mancisidor, Ane Miren
    Garcia-Blanco, Maria Belen
    Quintana, Iban
    Arrazola, Pedro Jose
    Espinosa, Elixabete
    Cuesta, Mikel
    Albizuri, Joseba
    Garciandia, Fermin
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2023, 7 (04):