Validation of a clinical breast cancer risk assessment tool combining a polygenic score for all ancestries with traditional risk factors

被引:3
作者
Mabey, Brent [1 ]
Hughes, Elisha [1 ]
Kucera, Matthew [1 ]
Simmons, Timothy [1 ]
Hullinger, Brooke [1 ]
Pederson, Holly J. [2 ]
Yehia, Lamis [2 ]
Eng, Charis [2 ]
Garber, Judy [3 ]
Gary, Monique [4 ]
Gordon, Ora [5 ]
Klemp, Jennifer R. [6 ]
Mukherjee, Semanti [7 ]
Vijai, Joseph [7 ]
Olopade, Olufunmilayo I. [8 ]
Pruthi, Sandhya [9 ]
Kurian, Allison [10 ]
Robson, Mark E.
Whitworth, Pat W. [11 ]
Pal, Tuya [12 ]
Ratzel, Sarah [1 ]
Wagner, Susanne [1 ]
Lanchbury, Jerry S. [1 ]
Taber, Katherine Johansen [1 ]
Slavin, Thomas P. [1 ]
Gutin, Alexander [1 ]
Offi, Kenneth [1 ,7 ]
机构
[1] Myriad Genet Inc, 322 North 2200 West, Salt Lake City, UT 84116 USA
[2] Cleveland Clin, Cleveland, OH USA
[3] Dana Farber Canc Inst, Boston, MA USA
[4] Grand View Hlth, Sellersville, PA USA
[5] Providence Hlth, Los Angeles, CA USA
[6] Univ Kansas, Med Ctr, Kansas City, KS USA
[7] Mem Sloan Kettering Canc Ctr, New York, NY USA
[8] Univ Chicago, Chicago, IL USA
[9] Mayo Clin, Rochester, MN USA
[10] Stanford Univ, Sch Med, Stanford, CA USA
[11] Nashville Breast Ctr, Nashville, TN USA
[12] Vanderbilt Univ, Med Ctr, Nashville, TN USA
关键词
Breast cancer; Breast prediction; Longitudinal; Polygenic risk score; Validation; MODEL; WOMEN;
D O I
10.1016/j.gim.2024.101128
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Purpose: We previously described a combined risk score (CRS) that integrates a multipleancestry polygenic risk score (MA-PRS) with the Tyrer-Cuzick (TC) model to assess breast cancer (BC) risk. Here, we present a longitudinal validation of CRS in a real-world cohort. Methods: This study included 130,058 patients referred for hereditary cancer genetic testing and negative for germline pathogenic variants in BC-associated genes. Data were obtained by linking genetic test results to medical claims (median follow-up 12.1 months). CRS calibration was evaluated by the ratio of observed to expected BCs. Results: Three hundred forty BCs were observed over 148,349 patient-years. CRS was wellcalibrated and demonstrated superior calibration compared with TC in high-risk deciles. MAPRS alone had greater discriminatory accuracy than TC, and CRS had approximately 2-fold greater discriminatory accuracy than MA-PRS or TC. Among those classified as high risk by TC, 32.6% were low risk by CRS, and of those classified as low risk by TC, 4.3% were high risk by CRS. In cases where CRS and TC classifications disagreed, CRS was more accurate in predicting incident BC. Conclusion: CRS was well-calibrated and significantly improved BC risk stratification. Shortterm follow-up suggests that clinical implementation of CRS should improve outcomes for patients of all ancestries through personalized risk-based screening and prevention. (c) 2024 The Authors. Published by Elsevier Inc. on behalf of American College of Medical Genetics and Genomics. This is an open access article under the CC BY license
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Development and validation of polygenic risk scores for prediction of breast cancer and breast cancer subtypes in Chinese women
    Hou, Can
    Xu, Bin
    Hao, Yu
    Yang, Daowen
    Song, Huan
    Li, Jiayuan
    [J]. BMC CANCER, 2022, 22 (01)
  • [42] Development and validation of polygenic risk scores for prediction of breast cancer and breast cancer subtypes in Chinese women
    Can Hou
    Bin Xu
    Yu Hao
    Daowen Yang
    Huan Song
    Jiayuan Li
    [J]. BMC Cancer, 22
  • [43] Implementing Multifactorial Risk Assessment with Polygenic Risk Scores for Personalized Breast Cancer Screening in the Population Setting: Challenges and Opportunities
    Walker, Meghan J.
    Blackmore, Kristina M.
    Chang, Amy
    Lambert-Cote, Laurence
    Turgeon, Annie
    Antoniou, Antonis C.
    Bell, Kathleen A.
    Broeders, Mireille J. M.
    Brooks, Jennifer D.
    Carver, Tim
    Chiquette, Jocelyne
    Despres, Philippe
    Easton, Douglas F.
    Eisen, Andrea
    Eloy, Laurence
    Evans, D. Gareth
    Fienberg, Samantha
    Joly, Yann
    Kim, Raymond H.
    Kim, Shana J.
    Knoppers, Bartha M.
    Lofters, Aisha K.
    Nabi, Hermann
    Paquette, Jean-Sebastien
    Pashayan, Nora
    Sheppard, Amanda J.
    Stockley, Tracy L.
    Dorval, Michel
    Simard, Jacques
    Chiarelli, Anna M.
    [J]. CANCERS, 2024, 16 (11)
  • [44] Combination of phenotype and polygenic risk score in breast cancer risk evaluation in the Spanish population: a case -control study
    Trivino, J. C.
    Ceba, A.
    Rubio-Solsona, E.
    Serra, D.
    Sanchez-Guiu, I.
    Ribas, G.
    Rosa, R.
    Cabo, M.
    Bernad, L.
    Pita, G.
    Gonzalez-Neira, A.
    Legarda, G.
    Diaz, J. L.
    Garcia-Vigara, A.
    Martinez-Aspas, A.
    Escrig, M.
    Bermejo, B.
    Eroles, P.
    Ibanez, J.
    Salas, D.
    Julve, A.
    Cano, A.
    Lluch, A.
    Minambres, R.
    Benitez, J.
    [J]. BMC CANCER, 2020, 20 (01)
  • [45] Seven-Single Nucleotide Polymorphism Polygenic Risk Score for Breast Cancer Risk Prediction in a Vietnamese Population
    Nguyen, Thanh Thi Ngoc
    Nguyen, Thu Huynh Ngoc
    Phan, Hoang Ngo
    Nguyen, Hue Thi
    [J]. CYTOLOGY AND GENETICS, 2022, 56 (04) : 379 - 390
  • [46] Long-term Accuracy of Breast Cancer Risk Assessment Combining Classic Risk Factors and Breast Density
    Brentnall, Adam R.
    Cuzick, Jack
    Buist, Diana S. M.
    Bowles, Erin J. Aiello
    [J]. JAMA ONCOLOGY, 2018, 4 (09)
  • [47] Risk of Breast Cancer Among Carriers of Pathogenic Variants in Breast Cancer Predisposition Genes Varies by Polygenic Risk Score
    Gao, Chi
    Polley, Eric C.
    Hart, Steven N.
    Huang, Hongyan
    Hu, Chunling
    Gnanaolivu, Rohan
    Lilyquist, Jenna
    Boddicker, Nicholas J.
    Na, Jie
    Ambrosone, Christine B.
    Auer, Paul L.
    Bernstein, Leslie
    Burnside, Elizabeth S.
    Eliassen, A. Heather
    Gaudet, Mia M.
    Haiman, Christopher
    Hunter, David J.
    Jacobs, Eric J.
    John, Esther M.
    Lindstrom, Sara
    Ma, Huiyan
    Neuhausen, Susan L.
    Newcomb, Polly A.
    O'Brien, Katie M.
    Olson, Janet E.
    Ong, Irene M.
    Patel, Alpa, V
    Palmer, Julie R.
    Sandler, Dale P.
    Tamimi, Rulla
    Taylor, Jack A.
    Teras, Lauren R.
    Trentham-Dietz, Amy
    Vachon, Celine M.
    Weinberg, Clarice R.
    Yao, Song
    Weitzel, Jeffrey N.
    Goldgar, David E.
    Domchek, Susan M.
    Nathanson, Katherine L.
    Couch, Fergus J.
    Kraft, Peter
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2021, 39 (23) : 2564 - +
  • [48] Breast cancer risk prediction using a polygenic risk score in the familial setting: a prospective study from the Breast Cancer Family Registry and kConFab
    Li, Hongyan
    Feng, Bingjian
    Miron, Alexander
    Chen, Xiaoqing
    Beesley, Jonathan
    Bimeh, Emmanuella
    Barrowdale, Daniel
    John, Esther M.
    Daly, Mary B.
    Andrulis, Irene L.
    Buys, Saundra S.
    Kraft, Peter
    Thorne, Heather
    Chenevix-Trench, Georgia
    Southey, Melissa C.
    Antoniou, Antonis C.
    James, Paul A.
    Terry, Mary Beth
    Phillips, Kelly-Anne
    Hopper, John L.
    Mitchell, Gillian
    Goldgar, David E.
    [J]. GENETICS IN MEDICINE, 2017, 19 (01) : 30 - 35
  • [49] Integration of a Cross-Ancestry Polygenic Model With Clinical Risk Factors Improves Breast Cancer Risk Stratification
    Tshiaba, Placede T.
    Ratman, Dariusz K.
    Sun, Jiayi M.
    Tunstall, Tate S.
    Levy, Brynn
    Shah, Premal S.
    Weitzel, Jeffrey N.
    Rabinowitz, Matthew
    Kumar, Akash
    Im, Kate M.
    [J]. JCO PRECISION ONCOLOGY, 2023, 7
  • [50] Cardiovascular Disease Risk Assessment Using Traditional Risk Factors and Polygenic Risk Scores in the Million Veteran Program
    Vassy, Jason L.
    Posner, Daniel C.
    Ho, Yuk-Lam
    Gagnon, David R.
    Galloway, Ashley
    Tanukonda, Vidisha
    Houghton, Serena C.
    Madduri, Ravi K.
    McMahon, Benjamin H.
    Tsao, Philip S.
    Damrauer, Scott M.
    O'Donnell, Christopher J.
    Assimes, Themistocles L.
    Casas, Juan P.
    Gaziano, J. Michael
    Pencina, Michael J.
    Sun, Yan V.
    Cho, Kelly
    Wilson, Peter W. F.
    [J]. JAMA CARDIOLOGY, 2023, 8 (06) : 564 - 574