Excellent synergies of mechanical properties and biological performance of additively-manufactured Ti-Cu - Cu alloy

被引:0
作者
Gong, Tao [1 ]
Zhao, Qinyang [1 ]
Mao, Yamei [1 ]
Zhang, Yong [1 ]
Chen, Yongnan [1 ]
Zhang, Fengying [1 ]
Ma, Jingyu [1 ]
Wang, Lin [2 ]
Gao, Guangrui [3 ]
机构
[1] Changan Univ, Sch Mat Sci & Engn, Xian 710064, Peoples R China
[2] Beijing Inst Technol, Natl Key Lab Sci & Technol Mat Shock & Impact, Beijing 100081, Peoples R China
[3] Xian Surface Mat Protect Co Ltd, Xian 710018, Peoples R China
基金
中国国家自然科学基金;
关键词
Additive manufacturing; Microstructure evolution; Mechanical properties; Biological performance; Ti-cu alloy; BEARING TITANIUM-ALLOY; ANTIBACTERIAL PROPERTIES; HEAT-TREATMENT; COPPER; TI-6AL-4V; BEHAVIOR; SILVER; LASER; TEMPERATURE; EVOLUTION;
D O I
10.1016/j.matchar.2024.114255
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Insufficient combination of mechanical properties and biological performance has hindered the application expansion of Ti-Cu - Cu alloy in biomedical field. In this study, Ti-13Cu-1Al alloy was prepared by additive manufacturing technology, and the microstructure and properties of the alloy were regulated by post-heat treatment. The strengthening-toughening mechanisms and biological performance enhancing mechanisms were comprehensively revealed by investigating the microstructure and properties of the alloy. The results show that, although the as-deposited alloy has a homogeneous microstructure and fine precipitated phases, the higher residual stresses in the alloy make it poorly ductile. After annealing in the biphasic region, due to the processes of precipitated phases spheroidization, elimination of small defects and residual stresses, reduction of hard phases' volume fraction, and orientation alteration of the alpha-Ti matrix, the elongation of the alloy increases significantly up to 18%. After annealing in the beta-phase region, the morphology of Ti2Cu 2 Cu phases changed from blocky to lath, which effectively hinder dislocation motion and leads to a significant increase in the tensile strength, up to a maximum of 1025 MPa. Meanwhile, the alloy also has good plasticity due to the rich slip pattern of dislocations in alpha-Ti matrix, achieving a good balance of strength and plasticity. In addition, both the as-deposited and annealed alloy show strong bacterial inhibition and good biocompatibility comparing to as-cast alloy, indicating excellent synergies of mechanical and biological properties are achieved for the additively-manufactured alloy.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Microstructure and mechanical properties of Ti-Cu amorphous coating synthesized on pure Cu substrate by mechanical alloying method
    Chen, Cheng
    Feng, Xiao-mei
    Shen, Yi-fu
    RARE METALS, 2020, 39 (10) : 1222 - 1228
  • [22] Thermophysical properties of additively manufactured Ti-5553 alloy
    Yang, Pin
    Johnson, Kyle L.
    Carroll, Jay D.
    Buckner, Jessica L.
    Blea-Kirby, Mia A.
    Groves, Catherine
    Coker, Eric N.
    ADDITIVE MANUFACTURING, 2023, 76
  • [23] Additively manufactured porous Ti6Al4V Alloy with excellent mechanical properties, corrosion resistance, in vitro and in vivo biocompatibility
    Zhang, Lei
    Hu, Hongyan
    Wang, Quan
    Zhou, Jing
    Liu, Yan
    Li, Zonghao
    Zhang, Yonghui
    Kui, Zhitong
    He, Zhengyuan
    Jiang, Yehua
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1009
  • [24] Additively-manufactured PEEK/HA porous scaffolds with highly-controllable mechanical properties and excellent biocompatibility
    Zheng, Jibao
    Zhao, Huiyu
    Dong, Enchun
    Kang, Jianfeng
    Liu, Chaozong
    Sun, Changning
    Li, Dichen
    Wang, Ling
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 128
  • [25] Enhanced antibacterial activity of Ti-Cu alloy by selective acid etching
    Lu, Ming
    Zhang, Ziming
    Zhang, Jiaqi
    Wang, Xiaoyan
    Qin, Gaowu
    Zhang, Erlin
    SURFACE & COATINGS TECHNOLOGY, 2021, 421
  • [26] Additively manufactured novel Al-Cu-Sc-Zr alloy: Microstructure and mechanical properties
    Agrawal, Priyanka
    Gupta, Sanya
    Thapliyal, Saket
    Shukla, Shivakant
    Haridas, Ravi Sankar
    Mishra, Rajiv S.
    ADDITIVE MANUFACTURING, 2021, 37
  • [27] Additively manufactured CuCrZr alloy: Microstructure, mechanical properties and machinability
    Bai, Yuchao
    Zhao, Cuiling
    Zhang, Yu
    Chen, Jie
    Wang, Hao
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 819
  • [28] Effect of extrusion processing on the Microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys
    Zhang, Erlin
    Li, Shengyi
    Ren, Jing
    Zhang, Lan
    Han, Yong
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016, 69 : 760 - 768
  • [29] Anisotropy in microstructure and mechanical properties of additively manufactured Ni-based GH4099 alloy
    Zhang, Xinyu
    Liang, Yongfeng
    Yi, Feng
    Liu, Han
    Zhou, Qingjun
    Yan, Zhenyu
    Lin, Junpin
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 26 : 6552 - 6564
  • [30] Mechanical properties of additively-manufactured cellular ceramic structures: A comprehensive study
    Zhang, Xueqin
    Zhang, Keqiang
    Zhang, Bin
    Li, Ying
    He, Rujie
    JOURNAL OF ADVANCED CERAMICS, 2022, 11 (12): : 1918 - 1931