Normalized solutions for Chern-Simons-Schrodinger system with mixed dispersion and critical exponential growth

被引:0
|
作者
Wei, Chenlu [1 ]
Wen, Lixi [2 ]
机构
[1] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha, Peoples R China
[2] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Chern-Simons-Schrodinger system; critical exponential growth; normalized solution; Trudinger-Moser inequality; STANDING WAVES; EQUATION; EXISTENCE; INEQUALITIES;
D O I
10.1002/mma.10383
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper focuses on the existence of normalized solutions for the Chern-Simons-Schrodinger system with mixed dispersion and critical exponential growth. These solutions correspond to critical points of the underlying energy functional under the L-2-norm constraint, namely, integral(R2)u(2)dx = c>0. Under certain mild assumptions, we establish the existence of nontrivial solutions by developing new mathematical strategies and analytical techniques for the given system. These results extend and improve the results in the existing literature.
引用
收藏
页码:1256 / 1280
页数:25
相关论文
共 50 条
  • [31] Infinitely Many High Energy Solutions for the Generalized Chern-Simons-Schrodinger System
    Su, Hua
    Wang, Yongqing
    Xu, Jiafa
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [32] NORMALIZED SOLUTIONS FOR SCHRODINGER EQUATIONS WITH CRITICAL EXPONENTIAL GROWTH IN R2
    Chen, Sitong
    Ruadulescu, Vicentiu d.
    Tang, Xianhua
    Yuan, Shuai
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (06) : 7704 - 7740
  • [33] Existence and Concentration of Semi-classical Ground State Solutions for Chern-Simons-Schrodinger System
    Wang, Lin-Jing
    Li, Gui-Dong
    Tang, Chun-Lei
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (02)
  • [34] Concentration of semi-classical solutions to the Chern-Simons-Schrodinger systems
    Wan, Youyan
    Tan, Jinggang
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (03):
  • [35] Sign-changing solutions for the nonlinear Chern-Simons-Schrodinger equations
    Xie, Weihong
    Chen, Chen
    APPLICABLE ANALYSIS, 2020, 99 (05) : 880 - 898
  • [36] Local Wellposedness of Chern-Simons-Schrodinger
    Liu, Baoping
    Smith, Paul
    Tataru, Daniel
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (23) : 6341 - 6398
  • [37] Blow-up solutions of the Chern-Simons-Schrodinger equations
    Huh, Hyungjin
    NONLINEARITY, 2009, 22 (05) : 967 - 974
  • [38] GROUND STATE SOLUTIONS FOR THE CHERN-SIMONS-SCHRODINGER SYSTEM WITH HARTREE-TYPE NONLINEARITY IN R2
    Jiang, Liting
    Che, Guofeng
    Chen, Haibo
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (04): : 2195 - 2211
  • [39] The Existence and Concentration of Ground State Solutions for Chern-Simons-schrodinger Systems with a Steep Well Potential
    Tan, Jinlan
    Li, Yongyong
    Tang, Chunlei
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (03) : 1125 - 1140
  • [40] ON THE UNCONDITIONAL UNIQUENESS OF SOLUTIONS TO THE INFINITE RADIAL CHERN-SIMONS-SCHRODINGER HIERARCHY
    Chen, Xuwen
    Smith, Paul
    ANALYSIS & PDE, 2014, 7 (07): : 1683 - 1712