NED-GNN: Detecting and Dropping Noisy Edges in Graph Neural Networks

被引:0
|
作者
Xu, Ming [1 ,2 ]
Zhang, Baoming [1 ,2 ]
Yuan, Jinliang [1 ,2 ]
Cao, Meng [1 ,2 ]
Wang, Chongjun [1 ,2 ]
机构
[1] State Key Lab Novel Software Technol, Nanjing, Peoples R China
[2] Nanjing Univ, Nanjing, Peoples R China
来源
WEB AND BIG DATA, PT I, APWEB-WAIM 2022 | 2023年 / 13421卷
基金
中国国家自然科学基金;
关键词
Graph neural networks; Noisy edges; Graph learning; Data mining;
D O I
10.1007/978-3-031-25158-0_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph neural networks have become the standard learning architectures in graph-based learning and achieve great progress in real-world tasks. Existing graph neural network methods are mostly based on message passing neural network(MPNN), which aggregates messages from neighbor nodes to update representations of target nodes. The framework follows the assumption of homophily that nodes linked by edges are similar and share the same labels. In the real world, the graphs can mostly follow the assumption. However, for nodes in the graph, the connections between nodes are not always connecting two similar nodes. We regard the edges as noisy edges. Such edges will introduce noise to message passing in the training process and hurt the performance of graph neural networks. To figure out the noisy edges and alleviate their influence, we propose the framework called Noisy Edge Dropping Graph Neural Network, short as NED-GNN. By evaluating the weights between sampled negative edges and existing edges for each node, NED-GNN detects and removes noisy edges. Extensive experiments are conducted on benchmark datasets and the promising performance compared with baseline methods indicates the effectiveness of our model.
引用
收藏
页码:91 / 105
页数:15
相关论文
共 50 条
  • [1] Auto-GNN: Neural architecture search of graph neural networks
    Zhou, Kaixiong
    Huang, Xiao
    Song, Qingquan
    Chen, Rui
    Hu, Xia
    FRONTIERS IN BIG DATA, 2022, 5
  • [2] Policy-GNN: Aggregation Optimization for Graph Neural Networks
    Lai, Kwei-Herng
    Zha, Daochen
    Zhou, Kaixiong
    Hu, Xia
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 461 - 471
  • [3] Towards Robust Graph Neural Networks for Noisy Graphs with Sparse Labels
    Dai, Enyan
    Jin, Wei
    Liu, Hui
    Wang, Suhang
    WSDM'22: PROCEEDINGS OF THE FIFTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2022, : 181 - 191
  • [4] Genetic-GNN: Evolutionary architecture search for Graph Neural Networks
    Shi, Min
    Tang, Yufei
    Zhu, Xingquan
    Huang, Yu
    Wilson, David
    Zhuang, Yuan
    Liu, Jianxun
    KNOWLEDGE-BASED SYSTEMS, 2022, 247
  • [5] AIC-GNN: Adversarial information completion for graph neural networks
    Wei, Quanmin
    Wang, Jinyan
    Fu, Xingcheng
    Hu, Jun
    Li, Xianxian
    INFORMATION SCIENCES, 2023, 626 : 166 - 179
  • [6] LeDA-GNN: Learnable dual augmentation for graph neural networks
    Liu, Gen
    Zhao, Zhongying
    Li, Chao
    Yu, Yanwei
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 268
  • [7] Tail-GNN: Tail-Node Graph Neural Networks
    Liu, Zemin
    Trung-Kien Nguyen
    Fang, Yuan
    KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 1109 - 1119
  • [8] GPT-GNN: Generative Pre-Training of Graph Neural Networks
    Hu, Ziniu
    Dong, Yuxiao
    Wang, Kuansan
    Chang, Kai-Wei
    Sun, Yizhou
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 1857 - 1867
  • [9] CCP-GNN: Competitive Covariance Pooling for Improving Graph Neural Networks
    Zhu, Pengfei
    Li, Jialu
    Dong, Zhe
    Hu, Qinghua
    Wang, Xiao
    Wang, Qilong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 12
  • [10] Ada-GNN: Adapting to Local Patterns for Improving Graph Neural Networks
    Luo, Zihan
    Lian, Jianxun
    Huang, Hong
    Jin, Hai
    Xie, Xing
    WSDM'22: PROCEEDINGS OF THE FIFTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2022, : 638 - 647