Data-driven rogue waves solutions for the focusing and variable coefficient nonlinear Schrödinger equations via deep learning

被引:1
作者
Sun, Jiuyun [1 ]
Dong, Huanhe [1 ]
Liu, Mingshuo [1 ]
Fang, Yong [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
INFORMED NEURAL-NETWORKS; PHYSICS; FRAMEWORK; SOLITON;
D O I
10.1063/5.0209068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the data-driven rogue waves solutions of the focusing and the variable coefficient nonlinear Schr & ouml;dinger (NLS) equations by the deep learning method from initial and boundary conditions. Specifically, first- and second-order rogue wave solutions for the focusing NLS equation and three deformed rogue wave solutions for the variable coefficient NLS equation are solved using physics-informed memory networks (PIMNs). The effects of optimization algorithm, network structure, and mesh size on the solution accuracy are discussed. Numerical experiments clearly demonstrate that the PIMNs can capture the nonlinear features of rogue waves solutions very well. This is of great significance for revealing the dynamical behavior of the rogue waves solutions and advancing the application of deep learning in the field of solving partial differential equations.
引用
收藏
页数:12
相关论文
共 17 条
  • [1] Rogue wave solutions and rogue-breather solutions to the focusing nonlinear Schrödinger equation
    Chen, Si-Jia
    Lu, Xing
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2024, 76 (03)
  • [2] On the lifespan of nonzero background solutions to a class of focusing nonlinear Schrödinger equations
    Hennig, Dirk
    Karachalios, Nikos I.
    Mantzavinos, Dionyssios
    Mitsotakis, Dimitrios
    WAVE MOTION, 2025, 132
  • [3] Data-driven soliton solutions and parameters discovery of the coupled nonlinear wave equations via a deep learning method
    Wang, Xiaoli
    Wu, Zekang
    Song, Jin
    Han, Wenjing
    Yan, Zhenya
    CHAOS SOLITONS & FRACTALS, 2024, 180
  • [4] Solitons and rogue wave solutions of focusing and defocusing space shifted nonlocal nonlinear Schrödinger equation
    Jun Yang
    Hai-Fang Song
    Miao-Shuang Fang
    Li-Yuan Ma
    Nonlinear Dynamics, 2022, 107 : 3767 - 3777
  • [5] Data-driven solutions and parameter discovery of the extended higher-order nonlinear Schrödinger equation in optical fibers
    Zhang, Yu
    Lu, Xing
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 468
  • [6] Data-driven vector degenerate and nondegenerate solitons of coupled nonlocal nonlinear Schrödinger equation via improved PINN algorithm
    Qiu, Wei-Xin
    Si, Zhi-Zeng
    Mou, Da-Sheng
    Dai, Chao-Qing
    Li, Ji-Tao
    Liu, Wei
    NONLINEAR DYNAMICS, 2025, 113 (05) : 4063 - 4076
  • [7] Data-driven vector soliton solutions of coupled nonlinear Schrodinger equation using a deep learning algorithm
    Mo, Yifan
    Ling, Liming
    Zeng, Delu
    PHYSICS LETTERS A, 2022, 421
  • [8] Data-driven high-order rogue waves and parameters discovery for Gardner equation using deep learning approach
    Sun, Shi-fei
    Tian, Shi-fang
    Li, Biao
    RESULTS IN PHYSICS, 2024, 57
  • [9] Multisoliton solutions and energy sharing collisions in coupled nonlinear Schrödinger equations with focusing, defocusing and mixed type nonlinearities
    M. Vijayajayanthi
    T. Kanna
    M. Lakshmanan
    The European Physical Journal Special Topics, 2009, 173 : 57 - 80
  • [10] Data-driven identification of nonlinear normal modes via physics-integrated deep learning
    Li, Shanwu
    Yang, Yongchao
    NONLINEAR DYNAMICS, 2021, 106 (04) : 3231 - 3246