Experimental demonstration of transition from J x B heating to stochastic heating in ultrashort high intensity laser foil interaction

被引:0
作者
Mandal, T. [1 ]
Arora, V. [1 ]
Moorti, A. [1 ,2 ]
Uphadhyay, A. [1 ,2 ]
Chakera, J. A. [1 ,2 ]
机构
[1] Raja Ramanna Ctr Adv Technol, Indore 452013, India
[2] Homi Bhabha Natl Inst, Training Sch Complex, Mumbai 400094, India
关键词
ACCELERATION; PULSE; ABSORPTION;
D O I
10.1063/5.0214472
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We experimentally demonstrate the transition of fast electron generation mechanism from J x B heating to stochastic heating by varying preplasma scale length in the interaction of ultrashort (similar to 25 fs) high intensity (similar to 3-4 x 10(19) W/cm(2)) laser with thin foil. At sharp plasma density laser interaction (contrast similar to 2 x 10(-10) at 1 ns, L/lambda << 1), fast electrons were observed along the laser propagation direction demonstrating J x B heating. Interestingly, fast electron temperature in this case was less than ponderomotive scaling. The reasons were identified to be the small excursion length of electron compared to laser wavelength in sharp density interaction along with energy loss while escaping through the rear surface. A simplistic model has been proposed to understand the energy loss mechanism from the rear surface. Next, preplasma was introduced gradually by varying the amplified spontaneous emission contrast and additional picosecond prepulse at different delays. It resulted in an increase in the energy and temperature of fast electrons. Most importantly, at larger scale length (L/lambda >> 1), fast electron temperature beyond the ponderomotive limit was observed. The temperature scales with scale length as T proportional to L0.59 and shows a saturation effect at longer scale length. The results indicate a gradual change in the fast electron generation mechanism to stochastic heating producing superponderomotive energy. Particle-in-cell simulation also very well reproduces our experimental findings. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
引用
收藏
页数:14
相关论文
共 76 条
  • [41] Ion acceleration by superintense laser-plasma interaction
    Macchi, Andrea
    Borghesi, Marco
    Passoni, Matteo
    [J]. REVIEWS OF MODERN PHYSICS, 2013, 85 (02) : 751 - 793
  • [42] HELIOS-CR - A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling
    MacFarlane, JJ
    Golovkin, IE
    Woodruff, PR
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2006, 99 (1-3) : 381 - 397
  • [43] Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses
    Mackinnon, AJ
    Sentoku, Y
    Patel, PK
    Price, DW
    Hatchett, S
    Key, MH
    Andersen, C
    Snavely, R
    Freeman, RR
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (21) : 2150061 - 2150064
  • [44] Diagnostics for fast ignition science (invited)
    MacPhee, A. G.
    Akli, K. U.
    Beg, F. N.
    Chen, C. D.
    Chen, H.
    Clarke, R.
    Hey, D. S.
    Freeman, R. R.
    Kemp, A. J.
    Key, M. H.
    King, J. A.
    Le Pape, S.
    Link, A.
    Ma, T. Y.
    Nakamura, H.
    Offermann, D. T.
    Ovchinnikov, V. M.
    Patel, P. K.
    Phillips, T. W.
    Stephens, R. B.
    Town, R.
    Tsui, Y. Y.
    Wei, M. S.
    Van Woerkom, L. D.
    Mackinnon, A. J.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (10)
  • [45] Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target
    Malka, G
    Miquel, JL
    [J]. PHYSICAL REVIEW LETTERS, 1996, 77 (01) : 75 - 78
  • [46] Addressing key aspects of J x B driven MeV fast electron generation in ultra-short ultra-intense laser foil interaction
    Mandal, T.
    Arora, V.
    Moorti, A.
    Uphadhyay, A.
    Chakera, J. A.
    [J]. PHYSICS OF PLASMAS, 2023, 30 (02)
  • [47] K-α x-ray measurements and their applicability for fast electron generation and transport studies in ultrashort intense laser foil interaction
    Mandal, T.
    Arora, V
    Moorti, A.
    Chakera, J. A.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (09)
  • [48] Experimental study of fast electron generation in intense short duration laser solid interaction at grazing incidence
    Mandal, T.
    Arora, V.
    Rao, B. S.
    Moorti, A.
    Upadhyay, A.
    Chakera, J. A.
    [J]. PHYSICS OF PLASMAS, 2019, 26 (04)
  • [49] Highly collimated monoenergetic target-surface electron acceleration in near-critical-density plasmas
    Mao, J. Y.
    Chen, L. M.
    Huang, K.
    Ma, Y.
    Zhao, J. R.
    Li, D. Z.
    Yan, W. C.
    Ma, J. L.
    Aeschlimann, M.
    Wei, Z. Y.
    Zhang, J.
    [J]. APPLIED PHYSICS LETTERS, 2015, 106 (13)
  • [50] On electron acceleration by intense laser pulses in the presence of a stochastic field
    Meyer-ter-Vehn, J
    Sheng, ZM
    [J]. PHYSICS OF PLASMAS, 1999, 6 (03) : 641 - 644