Accurate UAV Small Object Detection Based on HRFPN and EfficentVMamba

被引:0
作者
Wu, Shixiao [1 ]
Lu, Xingyuan [2 ]
Guo, Chengcheng [3 ,4 ]
Guo, Hong [5 ]
机构
[1] Wuhan Business Univ, Sch Informat Engn, Wuhan 430056, Peoples R China
[2] Tianjin Univ Technol, Key Lab Comp Vis & Syst, Minist Educ, Tianjin 300384, Peoples R China
[3] Wuhan Coll, Sch Informat Engn, Wuhan 430212, Peoples R China
[4] Wuhan Univ, Sch Elect Informat, Wuhan 430072, Peoples R China
[5] Tianjin Univ Technol, Sch Comp Sci & Engn, Tianjin 300384, Peoples R China
关键词
small object detection; deep learning; HRNet; Mamba; YOLO; feature fusion; NEURAL-NETWORK;
D O I
10.3390/s24154966
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
(1) Background: Small objects in Unmanned Aerial Vehicle (UAV) images are often scattered throughout various regions of the image, such as the corners, and may be blocked by larger objects, as well as susceptible to image noise. Moreover, due to their small size, these objects occupy a limited area in the image, resulting in a scarcity of effective features for detection. (2) Methods: To address the detection of small objects in UAV imagery, we introduce a novel algorithm called High-Resolution Feature Pyramid Network Mamba-Based YOLO (HRMamba-YOLO). This algorithm leverages the strengths of a High-Resolution Network (HRNet), EfficientVMamba, and YOLOv8, integrating a Double Spatial Pyramid Pooling (Double SPP) module, an Efficient Mamba Module (EMM), and a Fusion Mamba Module (FMM) to enhance feature extraction and capture contextual information. Additionally, a new Multi-Scale Feature Fusion Network, High-Resolution Feature Pyramid Network (HRFPN), and FMM improved feature interactions and enhanced the performance of small object detection. (3) Results: For the VisDroneDET dataset, the proposed algorithm achieved a 4.4% higher Mean Average Precision (mAP) compared to YOLOv8-m. The experimental results showed that HRMamba achieved a mAP of 37.1%, surpassing YOLOv8-m by 3.8% (Dota1.5 dataset). For the UCAS_AOD dataset and the DIOR dataset, our model had a mAP 1.5% and 0.3% higher than the YOLOv8-m model, respectively. To be fair, all the models were trained without a pre-trained model. (4) Conclusions: This study not only highlights the exceptional performance and efficiency of HRMamba-YOLO in small object detection tasks but also provides innovative solutions and valuable insights for future research.
引用
收藏
页数:23
相关论文
共 43 条
  • [1] Bochkovskiy A, 2020, Arxiv, DOI [arXiv:2004.10934, 10.48550/arXiv.2004.10934]
  • [2] GCL-YOLO: A GhostConv-Based Lightweight YOLO Network for UAV Small Object Detection
    Cao, Jinshan
    Bao, Wenshu
    Shang, Haixing
    Yuan, Ming
    Cheng, Qian
    [J]. REMOTE SENSING, 2023, 15 (20)
  • [3] VisDrone-DET2019: The Vision Meets Drone Object Detection in Image Challenge Results
    Du, Dawei
    Zhu, Pengfei
    Wen, Longyin
    Bian, Xiao
    Ling, Haibin
    Hu, Qinghua
    Peng, Tao
    Zheng, Jiayu
    Wang, Xinyao
    Zhang, Yue
    Bo, Liefeng
    Shi, Hailin
    Zhu, Rui
    Kumar, Aashish
    Li, Aijin
    Zinollayev, Almaz
    Askergaliyev, Anuar
    Schumann, Arne
    Mao, Binjie
    Lee, Byeongwon
    Liu, Chang
    Chen, Changrui
    Pan, Chunhong
    Huo, Chunlei
    Yu, Da
    Cong, Dechun
    Zeng, Dening
    Pailla, Dheeraj Reddy
    Li, Di
    Wang, Dong
    Cho, Donghyeon
    Zhang, Dongyu
    Bai, Furui
    Jose, George
    Gao, Guangyu
    Liu, Guizhong
    Xiong, Haitao
    Qi, Hao
    Wang, Haoran
    Qiu, Heqian
    Li, Hongliang
    Lu, Huchuan
    Kim, Ildoo
    Kim, Jaekyum
    Shen, Jane
    Lee, Jihoon
    Ge, Jing
    Xu, Jingjing
    Zhou, Jingkai
    Meier, Jonas
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 213 - 226
  • [4] CenterNet: Keypoint Triplets for Object Detection
    Duan, Kaiwen
    Bai, Song
    Xie, Lingxi
    Qi, Honggang
    Huang, Qingming
    Tian, Qi
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 6568 - 6577
  • [5] Ge Z, 2021, Arxiv, DOI [arXiv:2107.08430, DOI 10.48550/ARXIV.2107.08430]
  • [6] NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection
    Ghiasi, Golnaz
    Lin, Tsung-Yi
    Le, Quoc V.
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 7029 - 7038
  • [7] Gu A, 2021, ADV NEUR IN, V34
  • [8] Gu AL, 2022, Arxiv, DOI arXiv:2111.00396
  • [9] Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (09) : 1904 - 1916
  • [10] Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372]