Concentration Controlling of Carboxylic Ester-Based Electrolyte for Low Temperature Lithium-Ion Batteries

被引:1
作者
Gao, Song [1 ,2 ]
Wang, Kang [1 ,2 ]
Wang, Liying [1 ,2 ]
Yang, Xijia [1 ,2 ]
Yang, Yue [1 ,2 ]
Xiu, Wencui [4 ]
Li, Xuesong [1 ,2 ]
Lu, Wei [1 ,2 ,3 ]
机构
[1] Changchun Univ Technol, Key Lab Adv Struct Mat, Minist Educ, Changchun 130012, Peoples R China
[2] Changchun Univ Technol, Adv Inst Mat Sci, Changchun 130012, Peoples R China
[3] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, State Key Lab Luminescence & Applicat, Changchun 130033, Peoples R China
[4] Jilin Agr Sci & Technol Univ, Sch Mech & Civil Engn, Jilin 132101, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium battery electrolyte; low-temperature; solid electrolyte interface; rapid desolvation; PERFORMANCE;
D O I
10.1002/chem.202401935
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Low temperature has been a major challenge for lithium-ion batteries (LIBs) to maintain satisfied electrochemical performance, and the main reason is the deactivation of electrolyte with the decreasing temperature. To address this point, in present work, we develop a low-temperature resistant electrolyte which includes ethyl acetate (EA) and fluoroethylene carbonate (FEC) as solvent and lithium difluoro(oxalato)borate (LiDFOB) as the primary lithium salt. Due to the preferential decomposition of LiDFOB and FEC, a solid electrolyte interface rich in LiF is formed on the lithium metal anodes (LMAs) and lithium cobalt oxide (LCO) cathodes, contributing to higher stability and rapid desolvation of Li+ ions. The batteries with the optimized electrolyte can undergo cycling tests at -40 degrees C, with a capacity retention of 83.9 % after 200 cycles. Furthermore, the optimized electrolyte exhibits excellent compatibility with both LCO cathodes and graphite (Gr) anodes, enabling a Gr/LCO battery to maintain a capacity retention of 90.3 % after multiple cycles at -25 degrees C. This work proposes a cost-effective electrolyte that can activate potential LIBs in practical scenarios, especially in low-temperature environments. The introduction of moderate concentrations of LiDFOB and FEC has established a solid electrolyte interface rich in LiF. This effectively suppresses side reactions between the electrolyte and lithium metal and promotes the desolvation process of Li+. Li/LCO batteries using this electrolyte exhibit excellent long-term cycling performance even at -40 degrees C. image
引用
收藏
页数:12
相关论文
共 58 条
[1]   Formation of LiF-rich Cathode-Electrolyte Interphase by Electrolyte Reduction [J].
Bai, Panxing ;
Ji, Xiao ;
Zhang, Jiaxun ;
Zhang, Weiran ;
Hou, Singyuk ;
Su, Hai ;
Li, Mengjie ;
Deng, Tao ;
Cao, Longsheng ;
Liu, Sufu ;
He, Xinzi ;
Xu, Yunhua ;
Wang, Chunsheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (26)
[2]   Quasi-Localized High-Concentration Electrolytes for High-Voltage Lithium Metal Batteries [J].
Cai, Wenlong ;
Deng, Yan ;
Deng, Zhiwen ;
Jia, Ye ;
Li, Zeheng ;
Zhang, Xuemei ;
Xu, Changhaoyue ;
Zhang, Xue-Qiang ;
Zhang, Yun ;
Zhang, Qiang .
ADVANCED ENERGY MATERIALS, 2023, 13 (31)
[3]   Performance of wide temperature range electrolytes for Li-Ion capacitor pouch cells [J].
Cappetto, A. ;
Cao, W. J. ;
Luo, J. F. ;
Hagen, M. ;
Adams, D. ;
Shelikeri, A. ;
Xu, K. ;
Zheng, J. P. .
JOURNAL OF POWER SOURCES, 2017, 359 :205-214
[4]   Regulating the interfacial chemistry of graphite in ethyl acetate-based electrolyte for low-temperature Li-ion batteries [J].
Che, Ling ;
Hu, Zhaowen ;
Zhang, Tao ;
Dai, Peiming ;
Chen, Chengyu ;
Shen, Chao ;
Huang, Haitao ;
Jiao, Lifang ;
Jin, Ting ;
Xie, Keyu .
BATTERY ENERGY, 2024, 3 (03)
[5]   Toward wide-temperature electrolyte for lithium-ion batteries [J].
Chen, Long ;
Wu, Honglun ;
Ai, Xinping ;
Cao, Yuliang ;
Chen, Zhongxue .
BATTERY ENERGY, 2022, 1 (02)
[6]   Self-Doping Naphthalene Diimide Conjugated Polymers for Flexible Unipolar n-Type OTFTs [J].
Chen, Pinyu ;
Wang, Dongyang ;
Luo, Liang ;
Meng, Jinqiu ;
Zhou, Zhaoqiong ;
Dai, Xiaojuan ;
Zou, Ye ;
Tan, Luxi ;
Shao, Xiangfeng ;
Di, Chong-an ;
Jia, Chunyang ;
Zhang, Hao-Li ;
Liu, Zitong .
ADVANCED MATERIALS, 2023, 35 (20)
[7]   Dominant Solvent-Separated Ion Pairs in Electrolytes Enable Superhigh Conductivity for Fast-Charging and Low-Temperature Lithium Ion Batteries [J].
Chen, Xinping ;
Li, Zelin ;
Zhao, He ;
Li, Jie ;
Li, Wenting ;
Han, Ce ;
Zhang, Yujuan ;
Lu, Lisi ;
Li, Jinxing ;
Qiu, Xinping .
ACS NANO, 2024, 18 (11) :8350-8359
[8]   Enabling the Low-Temperature Cycling of NMC∥Graphite Pouch Cells with an Ester-Based Electrolyte [J].
Cho, Yoon-Gyo ;
Li, Mingqian ;
Holoubek, John ;
Li, Weikang ;
Yin, Yijie ;
Meng, Ying Shirley ;
Chen, Zheng .
ACS ENERGY LETTERS, 2021, 6 (05) :2016-2023
[9]   High-Energy Rechargeable Metallic Lithium Battery at-70°C Enabled by a Cosolvent Electrolyte [J].
Dong, Xiaoli ;
Lin, Yuxiao ;
Li, Panlong ;
Ma, Yuanyuan ;
Huang, Jianhang ;
Bin, Duan ;
Wang, Yonggang ;
Qi, Yue ;
Xia, Yongyao .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (17) :5623-5627
[10]  
Fan X.Y., 2024, Adv. Funct. Mater, V34