Statistical mechanics of stochastic quantum control: d-adic Rényi circuits

被引:2
作者
Allocca, Andrew A. [1 ,2 ]
LeMaire, Conner [1 ]
Iadecola, Thomas [3 ,4 ]
Wilson, Justin H. [1 ,2 ]
机构
[1] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[2] Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USA
[3] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
[4] Ames Natl Lab, Ames, IA 50011 USA
关键词
PROBABILISTIC CONTROL; CHAOS;
D O I
10.1103/PhysRevE.110.024113
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The dynamics of quantum information in many-body systems with large onsite Hilbert space dimension admits an enlightening description in terms of effective statistical mechanics models. Motivated by this fact, we reveal a connection between three separate models: the classically chaotic d-adic R & eacute;nyi map with stochastic control, a quantum analog of this map for qudits, and a Potts model on a random graph. The classical model and its quantum analog share a transition between chaotic and controlled phases, driven by a randomly applied control map that attempts to order the system. In the quantum model, the control map necessitates measurements that concurrently drive a phase transition in the entanglement content of the late-time steady state. To explore the interplay of the control and entanglement transitions, we derive an effective Potts model from the quantum model and use it to probe information-theoretic quantities that witness both transitions. The entanglement transition is found to be in the bond-percolation universality class, consistent with other measurement-induced phase transitions, while the control transition is governed by a classical random walk. These two phase transitions can be made to coincide by varying a parameter in the model, producing a picture consistent with behavior observed in previous small-size numerical studies of the quantum model.
引用
收藏
页数:17
相关论文
共 52 条
[1]   Probabilistic control of chaos: Chaotic maps under control [J].
Antoniou, I ;
Basios, V ;
Bosco, F .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1997, 34 (2-4) :373-389
[2]   Probabilistic control of chaos: The beta-adic Renyi map under control [J].
Antoniou, I ;
Basios, V ;
Bosco, F .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (08) :1563-1573
[3]   Absolute controllability condition for probabilistic control of chaos [J].
Antoniou, I ;
Basios, V ;
Bosco, F .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (02) :409-413
[4]   Theory of the phase transition in random unitary circuits with measurements [J].
Bao, Yimu ;
Choi, Soonwon ;
Altman, Ehud .
PHYSICAL REVIEW B, 2020, 101 (10)
[5]   Field Theory of Charge Sharpening in Symmetric Monitored Quantum Circuits [J].
Barratt, Fergus ;
Agrawal, Utkarsh ;
Gopalakrishnan, Sarang ;
Huse, David A. ;
Vasseur, Romain ;
Potter, Andrew C. .
PHYSICAL REVIEW LETTERS, 2022, 129 (12)
[6]  
Borel M E., 1909, Rend. Circ. Mat. Palermo, V27, P247, DOI [DOI 10.1007/BF03019651, 10.1007/BF03019651]
[7]  
Briegel HJ, 2009, NAT PHYS, V5, P19, DOI [10.1038/nphys1157, 10.1038/NPHYS1157]
[8]  
Buchhold M, 2022, Arxiv, DOI arXiv:2208.10506
[9]   A finite entanglement entropy and the c-theorem [J].
Casini, H ;
Huerta, M .
PHYSICS LETTERS B, 2004, 600 (1-2) :142-150
[10]   Unitary-projective entanglement dynamics [J].
Chan, Amos ;
Nandkishore, Rahul M. ;
Pretko, Michael ;
Smith, Graeme .
PHYSICAL REVIEW B, 2019, 99 (22)