A Microfluidic Impedance Cytometer for Accurate Detection and Counting of Circulating Tumor Cells by Simultaneous Mechanical and Electrical Sensing

被引:0
作者
Ke, Xiang [1 ]
Chen, Jin [1 ]
Sun, Jingjing [1 ]
Xiang, Rikui [1 ]
Fang, Wenjing [1 ]
Fu, Liangzun [1 ]
Huang, Xiwei [1 ]
Xiaz, Yan [2 ]
Guo, Jinhong [3 ]
Sun, Lingling [1 ]
机构
[1] Hangzhou Dianzi Univ, Minist Educ, Key Lab RF Circuits & Syst, Hangzhou 310018, Zhejiang, Peoples R China
[2] Zhejiang Univ, Sir Run Run Shaw Hosp, Dept Clin Lab, Sch Med, Hangzhou 310016, Zhejiang, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Sensing Sci & Engn, Shanghai 200240, Peoples R China
来源
2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024 | 2024年
基金
国家重点研发计划;
关键词
CTCs detection; cell counting; impedance; electrodes; mechanical; electrical; DETECTION SYSTEM;
D O I
10.1109/ISCAS58744.2024.10558461
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Microfluidic Impedance Cytometry (MIC) is an advanced approach for single-cell analysis, harnessing microfluidic technology and impedance-based principles, particularly applicable in cancer diagnostics based on circulating tumor cells (CTCs). However, only relying on one dimensional information from electrical sensing poses challenges when detecting smaller CTCs that exhibit comparable sizes to white blood cells. To address this issue, we propose a microfluidic impedance cytometer featuring customdesigned circuits, electrodes, and a microfluidic chip with constriction channel. This system concurrently extracts both mechanical and electrical properties from processed electrical signals, overcoming the obstacle posed by the intrinsic link between impedance signals and cell sizes. Our system was tested with A549 lung cancer cells, white blood cells, and red blood cells, demonstrating the ability to differentiate cells of similar sizes within the blood sample and accurate cell couting capabilities. This approach shows promise for early cancer detection and monitoring treatment efficacy.
引用
收藏
页数:5
相关论文
共 20 条
[1]   Flow cytometry: basic principles and applications [J].
Adan, Aysun ;
Alizada, Gunel ;
Kiraz, Yagmur ;
Baran, Yusuf ;
Nalbant, Ayten .
CRITICAL REVIEWS IN BIOTECHNOLOGY, 2017, 37 (02) :163-176
[2]   Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization [J].
Chen, Jian ;
Xue, Chengcheng ;
Zhao, Yang ;
Chen, Deyong ;
Wu, Min-Hsien ;
Wang, Junbo .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2015, 16 (05) :9804-9830
[3]   Microfluidic Particle Separation and Detection System Based on Standing Surface Acoustic Wave and Lensless Imaging [J].
Chen, Jin ;
Huang, Xiwei ;
Xu, Xuefeng ;
Wang, Renjie ;
Wei, Maoyu ;
Han, Wentao ;
Cao, Jiafei ;
Xuan, Weipeng ;
Ge, Yakun ;
Wang, Junchao ;
Sun, Lingling ;
Luo, Ji-Kui .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2022, 69 (07) :2165-2175
[4]   Development of an Imaging and Impedance Flow Cytometer Based on a Constriction Microchannel and Deep Neural Pattern Recognition [J].
Chen, Xiao ;
Liang, Hongyan ;
Li, Yimin ;
Chen, Deyong ;
Wang, Junbo ;
Chen, Jian .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (11) :6408-6416
[5]   Radiomics in breast cancer classification and prediction [J].
Conti, Allegra ;
Duggento, Andrea ;
Indovina, Iole ;
Guerrisi, Maria ;
Toschi, Nicola .
SEMINARS IN CANCER BIOLOGY, 2021, 72 :238-250
[6]   How to improve the sensitivity of coplanar electrodes and micro channel design in electrical impedance flow cytometry: a study [J].
Cottet, Jonathan ;
Kehren, Alexandre ;
van Lintel, Harald ;
Buret, Francois ;
Frenea-Robin, Marie ;
Renaud, Philippe .
MICROFLUIDICS AND NANOFLUIDICS, 2019, 23 (01)
[7]   High-throughput label-free characterization of viable, necrotic and apoptotic human lymphoma cells in a coplanar-electrode microfluidic impedance chip [J].
De Ninno, Adele ;
Reale, Riccardo ;
Giovinazzo, Alessandro ;
Bertani, Francesca R. ;
Businaro, Luca ;
Bisegna, Paolo ;
Matteucci, Claudia ;
Caselli, Federica .
BIOSENSORS & BIOELECTRONICS, 2020, 150
[8]   Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells [J].
Klein, Allon M. ;
Mazutis, Linas ;
Akartuna, Ilke ;
Tallapragada, Naren ;
Veres, Adrian ;
Li, Victor ;
Peshkin, Leonid ;
Weitz, David A. ;
Kirschner, Marc W. .
CELL, 2015, 161 (05) :1187-1201
[9]   An Effective Recognition Method for Particle Coincidence in Double Differential Impedance Cytometry [J].
Li, Shanshan ;
Wang, Chao ;
Yang, Bowen ;
Liang, Xinyi ;
Li, Junwei .
IEEE SENSORS JOURNAL, 2023, 23 (16) :18070-18080
[10]   Quantification of Cell Death Using an Impedance-Based Microfluidic Device [J].
Mansoorifar, Amin ;
Koklu, Anil ;
Beskok, Ali .
ANALYTICAL CHEMISTRY, 2019, 91 (06) :4140-4148