Applying Deep Learning with Convolutional Neural Networks to Laryngoscopic Imaging for Automated Segmentation and Classification of Vocal Cord Leukoplakia

被引:1
作者
Xiong, Ming [1 ]
Luo, Jia-wei [2 ]
Ren, Jia [1 ]
Hu, Juan-Juan [1 ]
Lan, Lan [2 ]
Zhang, Ying [3 ]
Lv, Dan [1 ]
Zhou, Xiao-bo [4 ]
Yang, Hui [1 ]
机构
[1] Sichuan Univ, West China Hosp, West China Med Sch, Dept Otolaryngol Head & Neck Surg, 37 Guoxue Xiang, Chengdu 610041, Sichuan, Peoples R China
[2] Sichuan Univ, West China Hosp, West China Biomed Big Data Ctr, West China Sch Med, 37 Guoxue Xiang, Chengdu 610041, Sichuan, Peoples R China
[3] Sichuan Univ, West China Hosp, West China Med Sch, Dept Pathol, Chengdu, Sichuan, Peoples R China
[4] Univ Texas Hlth Sci Ctr Houston, Sch Biomed Informat, Houston, TX USA
关键词
vocal cord leukoplakia; laryngoscopic imaging; convolutional neural networks; image segmentation; image classification; ARTIFICIAL-INTELLIGENCE; LARYNGEAL DYSPLASIA; DIAGNOSIS;
D O I
10.1177/01455613241275341
中图分类号
R76 [耳鼻咽喉科学];
学科分类号
100213 ;
摘要
Objectives: Vocal cord leukoplakia is clinically described as a white plaque or patch on the vocal cords observed during macroscopic examination, which does not take into account histological features or prognosis. A clinical challenge in managing vocal cord leukoplakia is to assess the potential malignant transformation of the lesion. This study aims to investigate the potential of deep learning (DL) for the simultaneous segmentation and classification of vocal cord leukoplakia using narrow band imaging (NBI) and white light imaging (WLI). The primary objective is to assess the model's accuracy in detecting and classifying lesions, comparing its performance in WLI and NBI. Methods: We applied DL to segment and classify NBI and WLI of vocal cord leukoplakia, and used pathological diagnosis as the gold standard. Results: The DL model autonomously detected lesions with an average intersection-over-union (IoU) >70%. In classification tasks, the model differentiated between lesions in the surgical group with a sensitivity of 93% and a specificity of 94% for WLI, and a sensitivity of 99% and a specificity of 97% for NBI. In addition, the model achieved a mean average precision of 81% in WLI and 92% in NBI, with an IoU threshold >0.5. Conclusions: The model proposed by us is helpful in assisting in accurate diagnosis of vocal cord leukoplakia from NBI and WLI.
引用
收藏
页数:9
相关论文
共 32 条
[1]   Automatic delineation of laryngeal squamous cell carcinoma during endoscopy [J].
Azam, Muhammad Adeel ;
Sampieri, Claudio ;
Ioppi, Alessandro ;
Azam, Muhammad Ashir ;
Baldini, Chiara ;
Li, Shunlei ;
Moccia, Sara ;
Peretti, Giorgio ;
Mattos, Leonardo S. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 88
[2]   Deep Learning Applied to White Light and Narrow Band Imaging Videolaryngoscopy: Toward Real-Time Laryngeal Cancer Detection [J].
Azam, Muhammad Adeel ;
Sampieri, Claudio ;
Ioppi, Alessandro ;
Africano, Stefano ;
Vallin, Alberto ;
Mocellin, Davide ;
Fragale, Marco ;
Guastini, Luca ;
Moccia, Sara ;
Piazza, Cesare ;
Mattos, Leonardo S. ;
Peretti, Giorgio .
LARYNGOSCOPE, 2022, 132 (09) :1798-1806
[3]   An automated approach for real-time informative frames classification in laryngeal endoscopy using deep learning [J].
Baldini, Chiara ;
Azam, Muhammad Adeel ;
Sampieri, Claudio ;
Ioppi, Alessandro ;
Ruiz-Sevilla, Laura ;
Vilaseca, Isabel ;
Alegre, Berta ;
Tirrito, Alessandro ;
Pennacchi, Alessia ;
Peretti, Giorgio ;
Moccia, Sara ;
Mattos, Leonardo S. .
EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2024, 281 (08) :4255-4264
[4]   Clinicopathological parameters associated with histological background and recurrence after surgical intervention of vocal cord leukoplakia [J].
Cui, Weixin ;
Xu, Wen ;
Yang, Qingwen ;
Hu, Rong .
MEDICINE, 2017, 96 (22)
[5]   Evaluation of Vascular Patterns Using Contact Endoscopy and Narrow-Band Imaging (CE-NBI) for the Diagnosis of Vocal Fold Malignancy [J].
Davaris, Nikolaos ;
Lux, Anke ;
Esmaeili, Nazila ;
Illanes, Alfredo ;
Boese, Axel ;
Friebe, Michael ;
Arens, Christoph .
CANCERS, 2020, 12 (01)
[6]   Deep-Learning System Detects Neoplasia in Patients With Barrett's Esophagus With Higher Accuracy Than Endoscopists in a Multistep Training and Validation Study With Benchmarking [J].
de Groof, Albert J. ;
Struyvenberg, Maarten R. ;
van der Putten, Joost ;
van der Sommen, Fons ;
Fockens, Kiki N. ;
Curvers, Wouter L. ;
Zinger, Sveta ;
Pouw, Roos E. ;
Coron, Emmanuel ;
Baldaque-Silva, Francisco ;
Pech, Oliver ;
Weusten, Bas ;
Meining, Alexander ;
Neuhaus, Horst ;
Bisschops, Raf ;
Dent, John ;
Schoon, Erik J. ;
de With, Peter H. ;
Bergman, Jacques J. .
GASTROENTEROLOGY, 2020, 158 (04) :915-+
[7]   Squamous epithelial changes of the larynx: Diagnosis and therapy [J].
Ferlito, Alfio ;
Devaney, Kenneth O. ;
Woolgar, Julia A. ;
Slootweg, Pieter J. ;
Paleri, Vinidh ;
Takes, Robert P. ;
Strojan, Primoz ;
Bradley, Patrick J. ;
Rinaldo, Alessandra .
HEAD AND NECK-JOURNAL FOR THE SCIENCES AND SPECIALTIES OF THE HEAD AND NECK, 2012, 34 (12) :1810-1816
[8]   The importance of preoperative and perioperative Narrow Band Imaging endoscopy in the diagnosis of pre-tumor and tumor lesions of the larynx [J].
Filipovsky, Tomas ;
Kalfert, David ;
Lukavcova, Eva ;
Zavazalova, Sarka ;
Hlozek, Jiri ;
Kovar, Daniel ;
Astl, Jaromir ;
Holy, Richard .
JOURNAL OF APPLIED BIOMEDICINE, 2023, 21 (03) :107-112
[9]  
Fu Jia, 2021, Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi, V35, P464, DOI 10.13201/j.issn.2096-7993.2021.05.019
[10]   Laryngeal Dysplasia: Persisting Dilemmas, Disagreements and Unsolved Problems-A Short Review [J].
Gale, Nina ;
Cardesa, Antonio ;
Hernandez-Prera, Juan C. ;
Slootweg, Pieter J. ;
Wenig, Bruce M. ;
Zidar, Nina .
HEAD & NECK PATHOLOGY, 2020, 14 (04) :1046-1051