Digital In-Memory Computing to Accelerate Deep Learning Inference on the Edge

被引:0
|
作者
Perri, Stefania [1 ]
Zambelli, Cristian [2 ]
Ielmini, Daniele [3 ]
Silvano, Cristina [3 ]
机构
[1] Univ Calabria, Arcavacata Di Rende, Italy
[2] Univ Ferrara, Ferrara, Italy
[3] Politecn Milan, Milan, Italy
关键词
D O I
10.1109/IPDPSW63119.2024.00037
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Deploying Deep Learning (DL) models on edge devices presents several challenges due to the limited set of processing and memory resources, and the bandwidth constraints while ensuring performance and energy requirements. In-memory computing (IMC) represents an efficient way to accelerate the inference of data-intensive DL tasks on the edge. Recently, several analog, digital, and mixed digital-analog memory technologies emerged as promising solutions for IMC. Among them, digital SRAM IMC exhibits a deterministic behavior and compatibility with advanced technology scaling rules making it a viable path for integration with hardware accelerators. This work focuses on discussing the potentially powerful aspects of digital IMC (DIMC) on edge System-on-Chip (SoC) devices. The limitations and ()pen challenges of DIMC are also discussed.
引用
收藏
页码:130 / 133
页数:4
相关论文
共 50 条
  • [21] Distributed Deep Learning Inference Acceleration using Seamless Collaboration in Edge Computing
    Li, Nan
    Losifidis, Alexandros
    Zhang, Qi
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 3667 - 3672
  • [22] OxRRAM-Based Analog in-Memory Computing for Deep Neural Network Inference: A Conductance Variability Study
    Doevenspeck, J.
    Degraeve, R.
    Fantini, A.
    Cosemans, S.
    Mallik, A.
    Debacker, P.
    Verkest, D.
    Lauwereins, R.
    Dehaene, W.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (05) : 2301 - 2305
  • [23] Optimizing for In-Memory Deep Learning With Emerging Memory Technology
    Wang, Zhehui
    Luo, Tao
    Goh, Rick Siow Mong
    Zhang, Wei
    Wong, Weng-Fai
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 15306 - 15320
  • [24] In-Memory Computing in Emerging Memory Technologies for Machine Learning: An Overview
    Roy, Kaushik
    Chakraborty, Indranil
    Ali, Mustafa
    Ankit, Aayush
    Agrawal, Amogh
    PROCEEDINGS OF THE 2020 57TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2020,
  • [25] Smarter Traffic Prediction Using Big Data, In-Memory Computing, Deep Learning and GPUs
    Aqib, Muhammad
    Mehmood, Rashid
    Alzahrani, Ahmed
    Katib, Iyad
    Albeshri, Aiiad
    Altowaijri, Saleh M.
    SENSORS, 2019, 19 (09)
  • [26] Physical unclonable in-memory computing for simultaneous protecting private data and deep learning models
    Yue, Wenshuo
    Wu, Kai
    Li, Zhiyuan
    Zhou, Juchen
    Wang, Zeyu
    Zhang, Teng
    Yang, Yuxiang
    Ye, Lintao
    Wu, Yongqin
    Bu, Weihai
    Wang, Shaozhi
    He, Xiaodong
    Yan, Xiaobing
    Tao, Yaoyu
    Yan, Bonan
    Huang, Ru
    Yang, Yuchao
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [27] Flash-based in-memory computing for stochastic computing in image edge detection
    Sun, Zhaohui
    Feng, Yang
    Guo, Peng
    Dong, Zheng
    Zhang, Junyu
    Liu, Jing
    Zhan, Xuepeng
    Wu, Jixuan
    Chen, Jiezhi
    JOURNAL OF SEMICONDUCTORS, 2023, 44 (05)
  • [28] Flash-based in-memory computing for stochastic computing in image edge detection
    Zhaohui Sun
    Yang Feng
    Peng Guo
    Zheng Dong
    Junyu Zhang
    Jing Liu
    Xuepeng Zhan
    Jixuan Wu
    Jiezhi Chen
    Journal of Semiconductors, 2023, (05) : 164 - 168
  • [29] Flash-based in-memory computing for stochastic computing in image edge detection
    Zhaohui Sun
    Yang Feng
    Peng Guo
    Zheng Dong
    Junyu Zhang
    Jing Liu
    Xuepeng Zhan
    Jixuan Wu
    Jiezhi Chen
    Journal of Semiconductors, 2023, 44 (05) : 164 - 168
  • [30] A Novel Approach in Edge Computing: In-Memory Sensing of Cancer Markers
    Heim, David
    Barbruni, Gian Luca
    Carrara, Sandro
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 306 - 310