A Hybrid Approach for Photovoltaic Maximum Power Tracking under Partial Shading Using Honey Badger and Genetic Algorithms

被引:1
|
作者
Fan, Zhi-Kai [1 ]
Setianingrum, Annisa [1 ]
Lian, Kuo-Lung [1 ]
Suwarno, Suwarno [2 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Elect Engn, Sect 4,43 Keelung Rd, Taipei 106, Taiwan
[2] Bandung Inst Technol, Sch Elect Engn & Informat, Dept Elect Power Engn, Jalan Ganesha 10, Bandung 40132, Indonesia
关键词
maximum power point tracking; photovoltaic system; honey badger algorithm; genetic algorithm; partial shading condition; MPPT ALGORITHM; GLOBAL MPPT; SYSTEMS; OPTIMIZATION; PERTURB;
D O I
10.3390/en17163935
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study presents a new approach for Maximum Power Point Tracking (MPPT) by combining the honey badger algorithm (HBA) with a Genetic Algorithm (GA). The integration aims to optimize photovoltaic (PV) system performance in partial shading conditions (PSCs). Initially, the HBA is utilized to explore extensively and identify potential solutions while avoiding local optima. If necessary, the GA is then employed to escape local optima through selection, crossover, and mutation operations. On average, this proposed method has a 40% improvement in tracking time and 0.77% in efficiency compared with the HBA. In a dynamic case, the proposed method achieves a 4.81% improvement compared to HBA.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] A Modified Hybrid Maximum Power Point Tracking Method for Photovoltaic Arrays Under Partially Shading Condition
    Zhang, Wei
    Zhou, Guopeng
    Ni, Hao
    Sun, Yunlian
    IEEE ACCESS, 2019, 7 : 160091 - 160100
  • [42] A review on maximum power point tracking for photovoltaic systems with and without shading conditions
    Ramli, Makbul A. M.
    Twaha, Ssennoga
    Ishaque, Kashif
    Al-Turki, Yusuf A.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 67 : 144 - 159
  • [43] Maximum Power Point Tracking Method under Partial Shading Conditions
    Nge, Chee Lim
    Midtgard, Ole-Morten
    Norum, Lars
    2012 38TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2012, : 1434 - 1436
  • [44] A flexible power point tracking algorithm for photovoltaic system under partial shading condition
    Xie, Zongkui
    Wu, Zhongqiang
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 49
  • [45] A Simulated Annealing Global Maximum Power Point Tracking Approach for PV Modules Under Partial Shading Conditions
    Lyden, Sarah
    Haque, Md. Enamul
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2016, 31 (06) : 4171 - 4181
  • [46] Application of The Hybrid Taguchi Genetic Algorithm to Maximum Power Point Tracking of Photovoltaic System
    Lee, Chin-Tan
    Tsou, Hung-I
    Chou, Tzu-Hsiang
    Weng, Ko-Wei
    PROCEEDINGS OF 4TH IEEE INTERNATIONAL CONFERENCE ON APPLIED SYSTEM INNOVATION 2018 ( IEEE ICASI 2018 ), 2018, : 231 - 234
  • [47] An Immune Firefly Algorithm for Tracking the Maximum Power Point of PV Array under Partial Shading Conditions
    Zhang, Mingrui
    Chen, Zheyang
    Wei, Li
    ENERGIES, 2019, 12 (16)
  • [48] Quantum Grover Search-Inspired Global Maximum Power Point Tracking for Photovoltaic Systems Under Partial Shading Conditions
    Gao, Fang
    Hu, Rongzhao
    Yin, Linfei
    Cao, Huibin
    Yu, Jun
    Shuang, Feng
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2024, 15 (03) : 1601 - 1613
  • [49] A Bayesian fusion technique for maximum power point tracking under partial shading condition
    Gugulothu, Ramesh
    Nagu, Bhookya
    SN APPLIED SCIENCES, 2021, 3 (05):
  • [50] Enhancing the tracking techniques for the global maximum power point under partial shading conditions
    Abu Eldahab, Yasser E.
    Saad, Naggar H.
    Zekry, Abdalhalim
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 73 : 1173 - 1183