Cold threat and moisture deficit induced individual tree mortality via 25-year monitoring in seminatural mixed forests, northeastern China

被引:0
作者
Shen, Chenchen [1 ,2 ]
Lei, Xiangdong [3 ]
Huang, Zhilin [1 ,2 ,4 ]
机构
[1] Chinese Acad Forestry, Ecol & Nat Conservat Inst, Key Lab Forest Ecol & Environm Natl Forestry & Gra, Beijing 100091, Peoples R China
[2] Hubei Zigui Three Gorges Reservoir Natl Forest Eco, Zigui 443600, Peoples R China
[3] Chinese Acad Forestry, Inst Forest Resource Informat Tech, State Key Lab Efficient Prod Forest Resources, Beijing 100091, Peoples R China
[4] Nanjing Forestry Univ, Coinnovat Ctr Sustainable Forestry Southern China, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
Tree mortality; Mixed forests; Model selection; Machine learning; Regional climate; CLIMATE-CHANGE; DOUGLAS-FIR; GROWTH; DROUGHT; MODELS; SURVIVAL; CLASSIFICATION; COMPETITION; DIAMETER; PATTERNS;
D O I
10.1016/j.scitotenv.2024.176048
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurately predicting tree mortality in mixed forests sets a challenge for conventional models because of large uncertainty, especially under changing climate. Machine learning algorithms had potential for predicting individual tree mortality with higher accuracy via filtering the relevant climatic and environmental factors. In this study, the sensitivity of individual tree mortality to regional climate was validated by modeling in seminatural mixed coniferous forests based on 25-year observations in northeast of China. Three advanced machine learning and deep learning algorithms were employed, including support vector machines, multi-layer perceptron, and random forests. Mortality was predicted by the effects of multiple inherent and environmental factors, including tree size and growth, topography, competition, stand structure and regional climate. All three types of models performed satisfactorily with their values of the areas under receiving operating characteristic curve (AUC) > 0.9. With tree growth, competition and regional climate as input variables, a model based on random forests showed the highest values of the explained variance score (0.862) and AUC (0.914). Since the trees were vulnerable despite their species, mortality could occur after growth limit induced by insufficient or excessive sun radiation during growing seasons, cold threat caused thermal insufficiency in winters, and annual moisture
引用
收藏
页数:10
相关论文
共 71 条
  • [1] A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests
    Allen, Craig D.
    Macalady, Alison K.
    Chenchouni, Haroun
    Bachelet, Dominique
    McDowell, Nate
    Vennetier, Michel
    Kitzberger, Thomas
    Rigling, Andreas
    Breshears, David D.
    Hogg, E. H.
    Gonzalez, Patrick
    Fensham, Rod
    Zhang, Zhen
    Castro, Jorge
    Demidova, Natalia
    Lim, Jong-Hwan
    Allard, Gillian
    Running, Steven W.
    Semerci, Akkin
    Cobb, Neil
    [J]. FOREST ECOLOGY AND MANAGEMENT, 2010, 259 (04) : 660 - 684
  • [2] Future climate risks from stress, insects and fire across US forests
    Anderegg, William R. L.
    Chegwidden, Oriana S.
    Badgley, Grayson
    Trugman, Anna T.
    Cullenward, Danny
    Abatzoglou, John T.
    Hicke, Jeffrey A.
    Freeman, Jeremy
    Hamman, Joseph J.
    [J]. ECOLOGY LETTERS, 2022, 25 (06) : 1510 - 1520
  • [3] Integrating biophysical controls in forest growth and yield predictions with artificial intelligence technology
    Ashraf, M. Irfan
    Zhao, Zhengyong
    Bourque, Charles P. -A.
    MacLean, David A.
    Meng, Fan-Rui
    [J]. CANADIAN JOURNAL OF FOREST RESEARCH, 2013, 43 (12) : 1162 - 1171
  • [4] The cooling and warming effects of potential forest transition on local land surface temperature in Northeast China
    Ba, Shengjie
    Wang, Wen J.
    Sun, Hongchao
    Bao, Suri G.
    Zhang, Hongyan
    He, Hong S.
    [J]. ECOLOGICAL INDICATORS, 2024, 159
  • [5] Tropical tree mortality has increased with rising atmospheric water stress
    Bauman, David
    Fortunel, Claire
    Delhaye, Guillaume
    Malhi, Yadvinder
    Cernusak, Lucas A.
    Bentley, Lisa Patrick
    Rifai, Sami W.
    Aguirre-Gutierrez, Jesus
    Menor, Imma Oliveras
    Phillips, Oliver L.
    McNellis, Brandon E.
    Bradford, Matt
    Laurance, Susan G. W.
    Hutchinson, Michael F.
    Dempsey, Raymond
    Santos-Andrade, Paul E.
    Ninantay-Rivera, Hugo R.
    Chambi Paucar, Jimmy R.
    McMahon, Sean M.
    [J]. NATURE, 2022, 608 (7923) : 528 - +
  • [6] Application of artificial neural networks for predicting tree survival and mortality in the Hyrcanian forest of Iran
    Bayat, Mahmoud
    Ghorbanpour, Mansour
    Zare, Rozita
    Jaafari, Abolfazl
    Binh Thai Pham
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 164
  • [7] Abrupt increases in Amazonian tree mortality due to drought-fire interactions
    Brando, Paulo Monteiro
    Balch, Jennifer K.
    Nepstad, Daniel C.
    Morton, Douglas C.
    Putz, Francis E.
    Coe, Michael T.
    Silverio, Divino
    Macedo, Marcia N.
    Davidson, Eric A.
    Nobrega, Caroline C.
    Alencar, Ane
    Soares-Filho, Britaldo S.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (17) : 6347 - 6352
  • [8] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [9] Long-term decline of the Amazon carbon sink
    Brienen, R. J. W.
    Phillips, O. L.
    Feldpausch, T. R.
    Gloor, E.
    Baker, T. R.
    Lloyd, J.
    Lopez-Gonzalez, G.
    Monteagudo-Mendoza, A.
    Malhi, Y.
    Lewis, S. L.
    Vasquez Martinez, R.
    Alexiades, M.
    Alvarez Davila, E.
    Alvarez-Loayza, P.
    Andrade, A.
    Aragao, L. E. O. C.
    Araujo-Murakami, A.
    Arets, E. J. M. M.
    Arroyo, L.
    Aymard C, G. A.
    Banki, O. S.
    Baraloto, C.
    Barroso, J.
    Bonal, D.
    Boot, R. G. A.
    Camargo, J. L. C.
    Castilho, C. V.
    Chama, V.
    Chao, K. J.
    Chave, J.
    Comiskey, J. A.
    Cornejo Valverde, F.
    da Costa, L.
    de Oliveira, E. A.
    Di Fiore, A.
    Erwin, T. L.
    Fauset, S.
    Forsthofer, M.
    Galbraith, D. R.
    Grahame, E. S.
    Groot, N.
    Herault, B.
    Higuchi, N.
    Coronado, E. N. Honorio
    Keeling, H.
    Killeen, T. J.
    Laurance, W. F.
    Laurance, S.
    Licona, J.
    Magnussen, W. E.
    [J]. NATURE, 2015, 519 (7543) : 344 - +
  • [10] Towards a common methodology for developing logistic tree mortality models based on ring-width data
    Cailleret, Maxime
    Bigler, Christof
    Bugmann, Harald
    Julio Camarero, Jesos
    Cufar, Katarina
    Davi, Hendrik
    Meszaros, Ilona
    Minunno, Francesco
    Peltoniemi, Miko
    Robert, Elisabeth M. R.
    Laura Suarez, Maria
    Tognetti, Roberto
    Martinez-Vilalta, Jordi
    [J]. ECOLOGICAL APPLICATIONS, 2016, 26 (06) : 1827 - 1841