Entire Solutions of Certain Type Binomial Differential Equations

被引:0
|
作者
Yang, Shuang-Shuang [1 ]
Liao, Liang-Wen [1 ]
Lu, Xiao-Qing [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Jiangsu Second Normal Univ, Sch Math Sci, Nanjing 211200, Peoples R China
基金
中国国家自然科学基金;
关键词
Nevanlinna theory; Binomial differential equation; Non-linear differential equation; Entire solutions; ZEROS;
D O I
10.1007/s40315-024-00556-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inspired by the questions Gundersen and Yang proposed, we investigate the exact forms of the entire solutions of the following two types of binomial differential equations a(z)ff ''+b(z)(f ')2=c(z)e2q(z);a(z)f ' f ''+b(z)f2=c(z)e2q(z),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} a(z)ff''+b(z)(f')<^>2=c(z)e<^>{2q(z)}; \\ a(z)f'f''+b(z)f<^>2=c(z)e<^>{2q(z)}, \end{aligned}$$\end{document}where a, b, c are polynomials with no common zeros satisfying abc not equivalent to 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$abc\not \equiv 0$$\end{document}, and q is a non-constant polynomial.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Entire solutions of certain class of differential-difference equations
    Fengrong Zhang
    Nana Liu
    Weiran Lü
    Chungchun Yang
    Advances in Difference Equations, 2015
  • [32] Entire solutions of certain class of differential-difference equations
    Zhang, Fengrong
    Liu, Nana
    Lu, Weiran
    Yang, Chungchun
    ADVANCES IN DIFFERENCE EQUATIONS, 2015, : 1 - 9
  • [33] Meromorphic Solutions of a Certain Type of Nonlinear Differential Equations
    Feng, Yan-Yan
    Chen, Jun-Fan
    ACTA MATHEMATICA VIETNAMICA, 2024, 49 (02) : 173 - 186
  • [34] Some results on the transcendental entire solutions of certain type of non-linear shift-differential equations
    Abhijit Banerjee
    Tania Biswas
    The Journal of Analysis, 2022, 30 : 1709 - 1724
  • [35] Some results on the transcendental entire solutions of certain type of non-linear shift-differential equations
    Banerjee, Abhijit
    Biswas, Tania
    JOURNAL OF ANALYSIS, 2022, 30 (04): : 1709 - 1724
  • [36] The entire solutions of some binomial difference equations
    Wang, Zhuo
    Zhang, Qingcai
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (04)
  • [37] The Exact Entire Solutions of Certain Type of Nonlinear Difference Equations
    F. Lü
    C. Li
    J. Xu
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2021, 56 : 94 - 103
  • [38] The Exact Entire Solutions of Certain Type of Nonlinear Difference Equations
    Lu, F.
    Li, C.
    Xu, J.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2021, 56 (02): : 94 - 103
  • [39] ENTIRE SOLUTIONS OF DELAY DIFFERENTIAL EQUATIONS OF MALMQUIST TYPE
    Zhang, Ran-Ran
    Huang, Zhi-Bo
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2020, 10 (05): : 1720 - 1740
  • [40] On meromorphic factoring and entire solutions of certain nonlinear partial differential equations
    Reed, Michael E.
    Saleeby, Elias G.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (12) : 1765 - 1775