Entire Solutions of Certain Type Binomial Differential Equations

被引:0
|
作者
Yang, Shuang-Shuang [1 ]
Liao, Liang-Wen [1 ]
Lu, Xiao-Qing [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Jiangsu Second Normal Univ, Sch Math Sci, Nanjing 211200, Peoples R China
基金
中国国家自然科学基金;
关键词
Nevanlinna theory; Binomial differential equation; Non-linear differential equation; Entire solutions; ZEROS;
D O I
10.1007/s40315-024-00556-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inspired by the questions Gundersen and Yang proposed, we investigate the exact forms of the entire solutions of the following two types of binomial differential equations a(z)ff ''+b(z)(f ')2=c(z)e2q(z);a(z)f ' f ''+b(z)f2=c(z)e2q(z),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} a(z)ff''+b(z)(f')<^>2=c(z)e<^>{2q(z)}; \\ a(z)f'f''+b(z)f<^>2=c(z)e<^>{2q(z)}, \end{aligned}$$\end{document}where a, b, c are polynomials with no common zeros satisfying abc not equivalent to 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$abc\not \equiv 0$$\end{document}, and q is a non-constant polynomial.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Trigonometric Identities and Entire Solutions of Non-linear Binomial Differential Equations
    Gao, Linkui
    Gao, Junyang
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [22] Trigonometric Identities and Entire Solutions of Non-linear Binomial Differential Equations
    Linkui Gao
    Junyang Gao
    Mediterranean Journal of Mathematics, 2023, 20
  • [23] ENTIRE SOLUTIONS OF ONE CERTAIN TYPE OF NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS
    Chen, Wei
    Nguyen Van Thin
    Wang, Qiongyan
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (04) : 1251 - 1266
  • [24] On Entire Solutions of Two Certain Fermat-Type Differential–Difference Equations
    Qiong Wang
    Wei Chen
    Peichu Hu
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 2951 - 2965
  • [25] Entire solution of certain type of delay-differential equations
    Rajeshwari, S.
    Husna, V
    Buzurg, Sheeba Kousar
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (46): : 850 - 856
  • [26] ENTIRE SOLUTIONS OF CERTAIN TYPES OF NONLINEAR DIFFERENTIAL EQUATIONS
    Li, Ping
    Lu, Wei-Ran
    Yang, Chung-Chun
    HOUSTON JOURNAL OF MATHEMATICS, 2019, 45 (02): : 431 - 437
  • [27] The growth of entire solutions of certain nonlinear differential-difference equations
    Hao, Wenjie
    Zhang, Qingcai
    AIMS MATHEMATICS, 2022, 7 (09): : 15904 - 15916
  • [28] On Entire Solutions of Two Certain Fermat-Type Differential-Difference Equations
    Wang, Qiong
    Chen, Wei
    Hu, Peichu
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (04) : 2951 - 2965
  • [29] Entire Solutions of Certain Type of Non-Linear Difference Equations
    Chen, Min-Feng
    Gao, Zong-Sheng
    Zhang, Ji-Long
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2019, 19 (01) : 17 - 36
  • [30] Entire Solutions of Certain Type of Non-Linear Difference Equations
    Min-Feng Chen
    Zong-Sheng Gao
    Ji-Long Zhang
    Computational Methods and Function Theory, 2019, 19 : 17 - 36