Deep learning for detection and counting of Nephrops norvegicus from underwater videos

被引:0
|
作者
Burguera, Antoni Burguera [1 ]
Bonin-Font, Francisco [1 ]
Chatzievangelou, Damianos [2 ]
Fernandez, Maria Vigo [2 ]
Aguzzi, Jacopo [2 ]
机构
[1] Univ Balearic Isl, Dept Math & Comp Sci, Syst Robot & Vis Grp, Carretera Valldemossa km 7 5, Palma De Mallorca 07122, Spain
[2] Inst Ciencies Mar ICM CSIC, Functioning & Vulnerabil Marine Environm Res Grp, Passeig Maritim Barceloneta 37-39, Barcelona 08003, Spain
关键词
neural network; Nephrops norvegicus; underwater robots; stock assessment; MPAs; FNTZs; deep-sea; BIODIVERSITY; NETWORKS; STOCK;
D O I
10.1093/icesjms/fsae089
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
The Norway lobster (Nephrops norvegicus) is one of the most important fishery items for the EU blue economy. This paper describes a software architecture based on neural networks, designed to identify the presence of N. norvegicus and estimate the number of its individuals per square meter (i.e. stock density) in deep-sea (350-380 m depth) Fishery No-Take Zones of the northwestern Mediterranean. Inferencing models were obtained by training open-source networks with images obtained from frames partitioning of in submarine vehicle videos. Animal detections were also tracked in successive frames of video sequences to avoid biases in individual recounting, offering significant success and precision in detection and density estimations.
引用
收藏
页码:1307 / 1324
页数:18
相关论文
共 50 条
  • [1] Automatic Detection of Nephrops Norvegicus Burrows from Underwater Imagery Using Deep Learning
    Naseer, Atif
    Baro, Enrique Nava
    Khan, Sultan Daud
    Vila, Yolanda
    Doyle, Jennifer
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (03): : 5321 - 5344
  • [2] Automatic Detection of Nephrops norvegicus Burrows in Underwater Images Using Deep Learning
    Naseer, Atif
    Nava Baro, Enrique
    Khan, Sultan Daud
    Vila Gordillo, Yolanda
    2020 GLOBAL CONFERENCE ON WIRELESS AND OPTICAL TECHNOLOGIES (GCWOT), 2020,
  • [3] Mosaics For Nephrops Detection in Underwater Survey Videos
    Sooknanan, Ken
    Doyle, Jennifer
    Lordan, Colm
    Wilson, James
    Kokaram, Anil
    Corrigan, David
    2014 OCEANS - ST. JOHN'S, 2014,
  • [4] Advancing Automated Detection of Nephrops norvegicus Burrows in Underwater Television Surveys through Machine Learning
    Oscar Papini
    Enrico Cecapolli
    Filippo Domenichetti
    Michela Martinelli
    Gabriele Pieri
    Marco Reggiannini
    Lorenzo Zacchetti
    Pattern Recognition and Image Analysis, 2024, 34 (4) : 1030 - 1036
  • [5] A Novel Detection Refinement Technique for Accurate Identification of Nephrops norvegicus Burrows in Underwater Imagery
    Naseer, Atif
    Baro, Enrique Nava
    Khan, Sultan Daud
    Vila, Yolanda
    SENSORS, 2022, 22 (12)
  • [6] Counting Cars from Aerial Videos Using Deep Learning
    Polidoro, Caio H. S.
    de Castro, Wellington V. M.
    Marcato, Jose
    Salgado Filho, Geison
    Matsubara, Edson T.
    PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2019, PT I, 2019, 11804 : 637 - 649
  • [7] Analyzing Underwater Videos for Fish Detection, Counting and Classification
    Lakshmi, G. Durga
    Krishnan, K. Raghesh
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 431 - 441
  • [8] Advanced Detections of Norway Lobster (Nephrops Norvegicus) Burrows using Deep Learning Techniques
    Naseer, Atif
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (03) : 493 - 499
  • [9] Estimating catch rates in real time: Development of a deep learning based Nephrops (Nephrops norvegicus) counter for demersal trawl fisheries
    Avsar, Ercan
    Feekings, Jordan P.
    Krag, Ludvig Ahm
    FRONTIERS IN MARINE SCIENCE, 2023, 10
  • [10] Fish counting through underwater fish detection using deep learning techniques
    Veerappan, Sundari
    Veluswami, Jansi Rani Sella
    ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA, 2023, 33 (04): : 69 - 80