The chance of sodium titanate anode for the practical sodium-ion batteries

被引:2
|
作者
Chen, Feng [1 ]
Li, Haoyu [1 ]
Qiao, Xianyan [1 ]
Wang, Ruoyang [1 ]
Hu, Changyan [1 ]
Chen, Ting [2 ]
Niu, Yifan [3 ]
Zhong, Benhe [1 ]
Wu, Zhenguo [1 ]
Guo, Xiaodong [1 ]
机构
[1] Sichuan Univ, Sch Chem Engn, Chengdu 610065, Peoples R China
[2] Chengdu Univ, Inst Adv Study, Chengdu 610106, Peoples R China
[3] Chengdu 7 High Sch, Chengdu 6100412, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium titanates; Sodium-ion batteries; Modification methods; Electronic materials; Electrochemistry; Synthesis; ELECTRODE MATERIALS; PERFORMANCE; NANOSHEETS; LI4TI5O12; CAPACITY; NA2TI3O7; LITHIUM; STABILITY; NA;
D O I
10.1016/j.cjche.2024.05.022
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Supporting sustainable green energy systems, there is a big demand gap for grid energy storage. Sodiumion storage, especially sodium-ion batteries (SIBs), have advanced significantly and are now emerging as a feasible alternative to the lithium-ion batteries equivalent in large-scale energy storage due to their natural abundance and prospective inexpensive cost. Among various anode materials of SIBs, beneficial properties, such as outstanding stability, great abundance, and environmental friendliness, make sodium titanates (NTOs), one of the most promising anode materials for the rechargeable SIBs. Nevertheless, there are still enormous challenges in application of NTO, owing to its low intrinsic electronic conductivity and collapse of structure. The research on NTOs is still in its infancy; there are few conclusive reviews about the specific function of various modification methods. Herein, we summarize the typical strategies of optimization and analysis the fine structures and fabrication methods of NTO anodes combined with the application of in situ characterization techniques. Our work provides effective guidance for promoting the continuous development, equipping NTOs in safety-critical systems, and lays a foundation for the development of NTO-anode materials in SIBs. (c) 2024 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:226 / 244
页数:19
相关论文
共 50 条
  • [31] Advanced Anode Materials for Rechargeable Sodium-Ion Batteries
    Qiao, Shuangyan
    Zhou, Qianwen
    Ma, Meng
    Liu, Hua Kun
    Dou, Shi Xue
    Chong, Shaokun
    ACS NANO, 2023, 17 (12) : 11220 - 11252
  • [32] Expanded graphite as superior anode for sodium-ion batteries
    Wen, Yang
    He, Kai
    Zhu, Yujie
    Han, Fudong
    Xu, Yunhua
    Matsuda, Isamu
    Ishii, Yoshitaka
    Cumings, John
    Wang, Chunsheng
    NATURE COMMUNICATIONS, 2014, 5
  • [33] Carbon Anode Materials for Advanced Sodium-Ion Batteries
    Hou, Hongshuai
    Qiu, Xiaoqing
    Wei, Weifeng
    Zhang, Yun
    Ji, Xiaobo
    ADVANCED ENERGY MATERIALS, 2017, 7 (24)
  • [34] Sodium-Ion Batteries
    Slater, Michael D.
    Kim, Donghan
    Lee, Eungje
    Johnson, Christopher S.
    ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (08) : 947 - 958
  • [35] Sodium-ion batteries
    不详
    PRZEMYSL CHEMICZNY, 2019, 98 (05): : 702 - 703
  • [36] Sodium-Ion Batteries
    Rojo, Teofilo
    Hu, Yong-Sheng
    Forsyth, Maria
    Li, Xiaolin
    ADVANCED ENERGY MATERIALS, 2018, 8 (17)
  • [37] Lepidocrocite Titanate-Graphene Composites for Sodium-Ion Batteries
    Barim, Gozde
    Yin, Wei
    Lin, Jason
    Song, Chengyu
    Kuykendall, Tevye R.
    Takeuchi, Kenneth J.
    Takeuchi, Esther S.
    Marschilok, Amy C.
    Doeff, Marca M.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (45): : 19065 - 19073
  • [38] Dual anode materials for lithium- and sodium-ion batteries
    Luo, Yuqing
    Tang, Yijian
    Zheng, Shasha
    Yan, Yan
    Xue, Huaiguo
    Pang, Huan
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (10) : 4236 - 4259
  • [39] Biphenylene Nanotube: A Promising Anode Material for Sodium-Ion Batteries
    Vafaee, Mohsen
    Moghaddam, Maryam Farajikhah
    Nasrollahpour, Mokhtar
    ADVANCED MATERIALS INTERFACES, 2023, 10 (13)
  • [40] FeWO4: An Anode Material for Sodium-Ion Batteries
    Wang, Wei
    Xiong, Weiyi
    Sun, He
    Jiao, Shuqiang
    TMS 2014 SUPPLEMENTAL PROCEEDINGS, 2014, : 899 - 905