The chance of sodium titanate anode for the practical sodium-ion batteries

被引:2
|
作者
Chen, Feng [1 ]
Li, Haoyu [1 ]
Qiao, Xianyan [1 ]
Wang, Ruoyang [1 ]
Hu, Changyan [1 ]
Chen, Ting [2 ]
Niu, Yifan [3 ]
Zhong, Benhe [1 ]
Wu, Zhenguo [1 ]
Guo, Xiaodong [1 ]
机构
[1] Sichuan Univ, Sch Chem Engn, Chengdu 610065, Peoples R China
[2] Chengdu Univ, Inst Adv Study, Chengdu 610106, Peoples R China
[3] Chengdu 7 High Sch, Chengdu 6100412, Peoples R China
来源
CHINESE JOURNAL OF CHEMICAL ENGINEERING | 2024年 / 72卷
基金
中国国家自然科学基金;
关键词
Sodium titanates; Sodium-ion batteries; Modification methods; Electronic materials; Electrochemistry; Synthesis; ELECTRODE MATERIALS; PERFORMANCE; NANOSHEETS; LI4TI5O12; CAPACITY; NA2TI3O7; LITHIUM; STABILITY; NA;
D O I
10.1016/j.cjche.2024.05.022
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Supporting sustainable green energy systems, there is a big demand gap for grid energy storage. Sodiumion storage, especially sodium-ion batteries (SIBs), have advanced significantly and are now emerging as a feasible alternative to the lithium-ion batteries equivalent in large-scale energy storage due to their natural abundance and prospective inexpensive cost. Among various anode materials of SIBs, beneficial properties, such as outstanding stability, great abundance, and environmental friendliness, make sodium titanates (NTOs), one of the most promising anode materials for the rechargeable SIBs. Nevertheless, there are still enormous challenges in application of NTO, owing to its low intrinsic electronic conductivity and collapse of structure. The research on NTOs is still in its infancy; there are few conclusive reviews about the specific function of various modification methods. Herein, we summarize the typical strategies of optimization and analysis the fine structures and fabrication methods of NTO anodes combined with the application of in situ characterization techniques. Our work provides effective guidance for promoting the continuous development, equipping NTOs in safety-critical systems, and lays a foundation for the development of NTO-anode materials in SIBs. (c) 2024 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:226 / 244
页数:19
相关论文
共 50 条
  • [31] A tightly integrated sodium titanate-carbon composite as an anode material for rechargeable sodium ion batteries
    Yan, Zichao
    Liu, Li
    Shu, Hongbo
    Yang, Xiukang
    Wang, Hao
    Tan, Jinli
    Zhou, Qian
    Huang, Zhifeng
    Wang, Xianyou
    JOURNAL OF POWER SOURCES, 2015, 274 : 8 - 14
  • [32] Sodium titanate nanorods decorated with silver nanoparticles as a high-performance anode material for sodium-ion batteries
    Yin, Xinxin
    Zhu, Limin
    Zhang, Yuwei
    Yang, Xiping
    Xie, Lingling
    Han, Qing
    Ullah, Irfan
    Hou, Wentao
    Wu, Xianyong
    Cao, Xiaoyu
    ELECTROCHIMICA ACTA, 2023, 469
  • [33] Semi-hydrogenated SiB: A promising anode material for lithium-ion and sodium-ion batteries
    Bahrami, Mina
    Shayeganfar, Farzaneh
    Mirabbaszadeh, Kavoos
    Ramazani, Ali
    ACTA MATERIALIA, 2022, 239
  • [34] Construction of an Anode Material for Sodium-Ion Batteries with an Ultrastable Structure
    Wang, Le
    Feng, Yefeng
    Lin, Yu'an
    Liang, Weijie
    Zhan, Jingbei
    Feng, Zuyong
    Xiong, Deping
    Zhang, Hui
    He, Miao
    LANGMUIR, 2024, 40 (46) : 24644 - 24652
  • [35] Mesocarbon microbeads with superior anode performance for sodium-ion batteries
    Wang, Jin-Xia
    Zhang, Yun-Peng
    Guo, Yuan
    Li, Ming-Wei
    Wang, Cheng-Yang
    IONICS, 2021, 27 (02) : 677 - 682
  • [36] The Progress of Hard Carbon as an Anode Material in Sodium-Ion Batteries
    Tan, Suchong
    Yang, Han
    Zhang, Zhen
    Xu, Xiangyu
    Xu, Yuanyuan
    Zhou, Jian
    Zhou, Xinchi
    Pan, Zhengdao
    Rao, Xingyou
    Gu, Yudong
    Wang, Zhoulu
    Wu, Yutong
    Liu, Xiang
    Zhang, Yi
    MOLECULES, 2023, 28 (07):
  • [37] Altering the Alkaline Metal Ions in Lepidocrocite-Type Layered Titanate for Sodium-Ion Batteries
    Ali, Sajid
    Zhang, Yanyan
    Yang, Haoyuan
    Xu, Tingting
    Wang, Ye
    Cui, Junyan
    Elshof, Johan E. ten
    Shan, Chongxin
    Xu, Haiyan
    Yuan, Huiyu
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (04) : 5028 - 5037
  • [38] Room-Temperature Synthesis of Mesoporous Sn/SnO2 Composite as Anode for Sodium-Ion Batteries
    Tang, Duihai
    Huang, Qingquan
    Yi, Ran
    Dai, Fang
    Gordin, Mikhail L.
    Hu, Shi
    Chen, Shuru
    Yu, Zhaoxin
    Sohn, Hiesang
    Song, Jiangxuan
    Wang, Donghai
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2016, (13-14) : 1950 - 1954
  • [39] Nanostructured FexSbyOz Composites as Anode Materials for Sodium-Ion Batteries
    Nguyen, Tuan Loi
    Park, Sang Joon
    Kim, Ji Hyeon
    Kim, Il Tae
    SCIENCE OF ADVANCED MATERIALS, 2017, 9 (09) : 1488 - 1492
  • [40] Development and Evaluation of Sn Foil Anode for Sodium-Ion Batteries
    Kim, Changhyeon
    Kim, Huihun
    Sadan, Milan K.
    Jeon, Minyeong
    Cho, Gyubong
    Ahn, Jouhyeon
    Kim, Kiwon
    Cho, Kwonkoo
    Ahn, Hyojun
    SMALL, 2021, 17 (50)