Limit Cycles Bifurcating from Planar Polynomial Quasi-Homogeneous Centers of Weight-Degree 3 with Nonsmooth Perturbations

被引:0
|
作者
Sui, Shiyou [1 ]
Xu, Weijiao [1 ]
Zhang, Yongkang [2 ]
机构
[1] Tianjin Univ Commerce, Sch Sci, Tianjin 300134, Peoples R China
[2] Tianjin Normal Univ, Sch Math Sci, Tianjin 300387, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2024年 / 34卷 / 11期
基金
中国国家自然科学基金;
关键词
Weight-homogeneous differential system; limit cycle; piecewise smooth polynomial; averaging method; DIFFERENTIAL-SYSTEMS; EQUIVALENCE;
D O I
10.1142/S0218127424501414
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we estimate the number of limit cycles bifurcating from the periodic orbits of the weight-homogeneous polynomial centers of weight-degree 3, when they are perturbed inside the class of piecewise smooth polynomial systems of degree n. By using the first-order averaging method, we give the upper and lower bounds on the maximal number of limit cycles which can bifurcate from the period annuluses. Our results indicate that the nonsmooth systems can have more limit cycles than the smooth ones.
引用
收藏
页数:12
相关论文
共 10 条
  • [1] LIMIT CYCLES BIFURCATING FROM THE PERIODIC ORBITS OF THE WEIGHT-HOMOGENEOUS POLYNOMIAL CENTERS OF WEIGHT-DEGREE 3
    Llibre, Jaume
    Lopes, Bruno D.
    de Moraes, Jaime R.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [2] Limit cycles bifurcating from the periodic annulus of the weight-homogeneous polynomial centers of weight-degree 2
    Llibre, J.
    Lopes, B. D.
    de Moraes, J. R.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 274 : 47 - 54
  • [3] Limit cycles bifurcating from planar polynomial quasi-homogeneous centers
    Gine, Jaume
    Grau, Maite
    Llibre, Jaume
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (12) : 7135 - 7160
  • [4] PLANAR QUASI-HOMOGENEOUS POLYNOMIAL SYSTEMS WITH A GIVEN WEIGHT DEGREE
    Xiong, Yanqin
    Han, Maoan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (07) : 4015 - 4025
  • [5] On the Limit Cycles Bifurcating from Piecewise Quasi-Homogeneous Differential Center
    Li, Shimin
    Wu, Kuilin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (07):
  • [6] Centers of quasi-homogeneous polynomial planar systems
    Algaba, A.
    Fuentes, N.
    Garcia, C.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (01) : 419 - 431
  • [7] LIMIT CYCLES BIFURCATING FROM THE PERIODIC ANNULUS OF CUBIC HOMOGENEOUS POLYNOMIAL CENTERS
    Llibre, Jaume
    Lopes, Bruno D.
    de Moraes, Jaime R.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [8] Bifurcation of Limit Cycles from a Quasi-Homogeneous Degenerate Center
    Geng, Fengjie
    Lian, Hairong
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (01):
  • [9] An Improvement on the Number of Limit Cycles Bifurcating from a Nondegenerate Center of Homogeneous Polynomial Systems
    Yu, Pei
    Han, Maoan
    Li, Jibin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (06):
  • [10] LIMIT CYCLES FOR QUADRATIC AND CUBIC PLANAR DIFFERENTIAL EQUATIONS UNDER POLYNOMIAL PERTURBATIONS OF SMALL DEGREE
    Martins, Ricardo M.
    Gomide, Otavio M. L.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (06) : 3353 - 3386