Pull-out behavior of cluster stud-post pouring UHPC connectors in prefabricated steel-concrete composite beam

被引:2
作者
Peng, Hongbo [1 ]
Zhang, Zhongya [2 ,3 ]
Jiang, Jinlong [2 ,3 ]
Yang, Jun [2 ,3 ]
Yu, Kun [2 ,3 ]
Zhou, Zhixiang [2 ,3 ,4 ]
Zou, Yang [2 ,3 ]
机构
[1] Chongqing Univ, Sch Civil Engn, Chongqing 400045, Peoples R China
[2] Chongqing Jiaotong Univ, State Key Lab Mt Bridge & Tunnel Engn, Chongqing 400074, Peoples R China
[3] Chongqing Jiaotong Univ, Sch Civil Engn, 66 Xuefu Ave, Chongqing 400074, Peoples R China
[4] Shenzhen Univ, Coll Civil & Transportat Engn, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Ultra-high performance concrete; Steel-concrete composite beam; Prefabricated; Cluster studs; Pull-out behavior; Capacity prediction; SHEAR CONNECTORS; STATIC BEHAVIOR; ANCHOR BOLTS; PERFORMANCE; EMBEDMENT; CONE;
D O I
10.1016/j.engstruct.2024.118082
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The use of ultra-high performance concrete (UHPC) as a connection material for cluster studs of prefabricated steel-concrete composite beams can achieve higher connection strength and less space for reserved holes. However, in addition to bearing the shear force, the studs need to bear the pull-out force to counteract the vertical relative separation between the steel and concrete. The pull-out behavior for cluster stud-post pouring UHPC connectors is complex and has not been clarified completely. Thus, a total of 30 cluster stud pull-out tests in 10 groups were carried out in this study, and the interface type, length-to-diameter ratio of the stud, transverse spacing of stud group, dimensions of the reserved holes, and type of post pouring concrete were considered. The results showed that the pull-out behavior of the cluster studs was different from that of studs embedded in castin-place intact UHPC slabs due to the UHPC conical integrity having been reduced significantly by the old-to-new concrete interface. The rough groove interface and UHPC as a post pouring material significantly improved the pull-out capacity and stiffness of the cluster studs. The stud fracture belongs to ductile failure, whereas UHPC and normal concrete (NC) cone failures are brittle. The bearing capacity of the UHPC cone is observed to increase with the effective embedment depth of the stud, the transverse spacing, and the dimensions of the reserved holes. The angle of the UHPC conical failure surface is 70 degrees based on 3D laser scanning. Finally, the theoretical equations for predicting the pull-out capacity of stud-post pouring UHPC connectors with a rough groove interface were proposed, and the critical length-to-diameter ratio of the stud was calculated for different combinations of stud and UHPC strength.
引用
收藏
页数:16
相关论文
共 45 条
  • [11] Eligehausen R., 1989, Fracture Mechanics of Concrete Structures, P281, DOI DOI 10.18419/OPUS-7930
  • [12] Eligehausen R., 1990, Fracture behavior and design of materials and structures, V2, P721
  • [13] Static behavior of grouped stud shear connectors in steel-precast UHPC composite structures containing thin full-depth slabs
    Fang, Zhuangcheng
    Fang, Haozhen
    Huang, Junxing
    Jiang, Haibo
    Chen, Gongfa
    [J]. ENGINEERING STRUCTURES, 2022, 252
  • [14] [冯峥 Feng Zheng], 2021, [中国公路学报, China Journal of Highway and Transport], V34, P78
  • [15] FUCHS W, 1995, ACI STRUCT J, V92, P73
  • [16] Distortional buckling analysis of steel-concrete composite box beams considering effect of stud rotational restraint under hogging moment
    Jiang Li-zhong
    Nie Lei-xin
    Zhou Wang-bao
    Wu Xia
    Liu Li-li
    [J]. JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2022, 29 (09) : 3158 - 3170
  • [17] Concrete cone failure of single cast-in anchors under tensile loading - A literature review
    Karmokar, Trijon
    Mohyeddin, Alireza
    Lee, Jessey
    Paraskeva, Themelina
    [J]. ENGINEERING STRUCTURES, 2021, 243
  • [18] Headed stud shear connector for thin ultrahigh-performance concrete bridge deck
    Kim, Jee-Sang
    Kwark, Jongwon
    Joh, Changbin
    Yoo, Sung-Won
    Lee, Kyoung-Chan
    [J]. JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2015, 108 : 23 - 30
  • [19] Pull-out behavior and design of headed studs in steel-UHPC composite structures
    Lai, Zhichao
    Han, Ying
    Huang, Junwen
    Yang, Xiaoqiang
    [J]. COMPOSITE STRUCTURES, 2023, 319
  • [20] Pull-out resistance of stud groups embedded in concrete
    Lai, Zhichao
    Han, Ying
    Yang, Xiaoqiang
    Wang, Ying
    Li, Qiang
    [J]. STRUCTURES, 2023, 47 : 1383 - 1395