THz Multidimensional Spectroscopy Sensing: A Novel Approach for High-Precision Metal Slag Recognition Using Packed Gratings

被引:1
作者
Zhang, Min [1 ]
Liu, Jiarui [1 ]
Xu, Xiaoguang [2 ]
Zhang, Bingyuan [3 ]
Hou, Shaodong [4 ]
Wang, Minghong [3 ]
Song, Qi [3 ]
机构
[1] Shenzhen Univ, Coll Phys & Optoelect Engn, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen 518060, Peoples R China
[2] Shenzhen Acad Inspect & Quarantine, Shenzhen 518010, Peoples R China
[3] Liaocheng Univ, Sch Phys Sci & Informat Technol, Shandong Key Lab Opt Commun Sci & Technol, Liaocheng 252059, Peoples R China
[4] Changzhou Inno Machining Co Ltd, Changzhou 213164, Peoples R China
关键词
Metals; Terahertz communications; Slag; Sensors; Dielectric constant; Absorption; Terahertz radiation; Optical sensor; THz detector; ultrafast dynamics; TERAHERTZ SPECTROSCOPY; IDENTIFICATION; OIL;
D O I
10.1109/JSEN.2024.3407127
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The accurate differentiation of slag types is pivotal for the metal market, given its implications for safety, environmental impact, and economic recovery of precious metals. However, conventional analytical techniques, such as XRD and scanning electron microscope (SEM)-EDS, are fraught with high costs, lengthy procedures, and potential dangers. In this investigation, we unveil an innovative method that harnesses the power of multidimensional spectroscopy, the linear discriminant analysis (LDA) algorithm, and THz time-domain spectroscopy (THz-TDS), obviating these challenges. Through a unique "mask filling" fabrication technique, we create devices laden with metallic particles. These devices, when interrogated with the aforementioned spectroscopic and analytical tools, yield a wealth of information, due to their integrated external controls. By distilling the essence of the spectral data via LDA, we craft a sophisticated multidimensional dataset that elevates the precision of slag classification from a lackluster 75.0% to an impressive 95.8%. Our strategy stands as a beacon of progress, offering a safer, swifter, and more economically viable pathway to the characterization of metal slags.
引用
收藏
页码:23723 / 23728
页数:6
相关论文
共 34 条
[1]   Pre-treatment of soil X-ray powder diffraction data for cluster analysis [J].
Butler, Benjamin M. ;
Sila, Andrew M. ;
Shepherd, Keith D. ;
Nyambura, Mercy ;
Gilmore, Chris J. ;
Kourkoumelis, Nikolaos ;
Hillier, Stephen .
GEODERMA, 2019, 337 :413-424
[2]   Coherent plasmonic enhanced terahertz transmission through random metallic media [J].
Chau, KJ ;
Dice, GD ;
Elezzabi, AY .
PHYSICAL REVIEW LETTERS, 2005, 94 (17)
[3]   Material parameter estimation with terahertz time-domain spectroscopy [J].
Dorney, TD ;
Baraniuk, RG ;
Mittleman, DM .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2001, 18 (07) :1562-1571
[4]   Recent Development in Slag Treatment and Dust Recycling [J].
Drissen, Peter ;
Ehrenberg, Andreas ;
Kuehn, Michael ;
Mudersbach, Dirk .
STEEL RESEARCH INTERNATIONAL, 2009, 80 (10) :737-745
[5]   Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy [J].
Duvillaret, L ;
Garet, F ;
Coutaz, JL .
APPLIED OPTICS, 1999, 38 (02) :409-415
[6]   A nanoscale optical blosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles [J].
Haes, AJ ;
Van Duyne, RP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (35) :10596-10604
[7]   Clean enhancing elimination of boron from silicon kerf using Na2O-SiO2 slag treatment [J].
Huang, Liuqing ;
Chen, Juan ;
Fang, Ming ;
Thomas, Sridevi ;
Danaei, Abdolkarim ;
Luo, Xuetao ;
Barati, Mansoor .
JOURNAL OF CLEANER PRODUCTION, 2018, 186 :718-725
[8]  
Jain K. S., J. Phys.
[9]   Probing Disaggregation of Crude Oil in a Magnetic Field with Terahertz Time-Domain Spectroscopy [J].
Jiang, Chen ;
Zhao, Kun ;
Zhao, Li J. ;
Jin, Wu J. ;
Yang, Yu P. ;
Chen, Shao H. .
ENERGY & FUELS, 2014, 28 (01) :483-487
[10]   MXenes-Based Fiber-Optic SPR Sensor for Colorectal Cancer Diagnosis [J].
Kaur, Baljinder ;
Kumar, Santosh ;
Kaushik, Brajesh Kumar .
IEEE SENSORS JOURNAL, 2022, 22 (07) :6661-6668