The set of trace ideals of curve singularities

被引:0
|
作者
Kobayashi, Toshinori [1 ]
Kumashiro, Shinya [2 ]
机构
[1] Meiji Univ, Sch Sci & Technol, 1-1-1 Higashi Mita,Tama Ku, Kawasaki, Kanagawa 2148571, Japan
[2] Osaka Inst Technol, Dept Math, 5-16-1 Omiya,Asahi Ku, Osaka 5358585, Japan
关键词
D O I
10.1007/s11856-024-2661-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate a problem of when commutative local domains have a finite number of trace ideals. The problem is left for the case of dimension one. In this paper, with a necessary assumption, we give a complete answer by using integrally closed ideals. We also explore properties of such domains related to birational extensions, reflexive ideals, and reflexive Ulrich modules. Special attention is given in the case of numerical semigroup rings of non-gap four. We then obtain a criterion for a ring to have a finite number of reflexive ideals up to isomorphism. Non-domains arising from fiber products are also explored.
引用
收藏
页码:153 / 184
页数:32
相关论文
共 50 条
  • [21] AN INEQUALITY FOR TRACE IDEALS
    VANHEMMEN, JL
    ANDO, T
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 76 (02) : 143 - 148
  • [22] COUNTING SINGULARITIES VIA FITTING IDEALS
    Jorge-Perez, V. H.
    Miranda, A. J.
    Saia, M. J.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (06)
  • [23] NORMALITY IN TRACE IDEALS
    DODDS, PG
    LENNARD, CJ
    JOURNAL OF OPERATOR THEORY, 1986, 16 (01) : 127 - 145
  • [24] Toric ideals of simple surface singularities
    Kaya, Gulay
    Mete, Pinar
    Sahin, Mesut
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (05): : 1057 - 1069
  • [25] Rings whose ideals are isomorphic to trace ideals
    Kobayashi, Toshinori
    Takahashi, Ryo
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (10) : 2252 - 2261
  • [26] Complete ideals and singularities of space curves
    Julio Castellanos
    Mathematische Zeitschrift, 2002, 239 : 777 - 802
  • [27] The singularities of the focal curve of a curve in space.
    Versluys, WA
    PROCEEDINGS OF THE KONINKLIJKE AKADEMIE VAN WETENSCHAPPEN TE AMSTERDAM, 1904, 6 : 17 - 30
  • [28] A fast algorithm for curve singularities
    Ma, SM
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 69 (03) : 403 - 414
  • [29] The resolution of singularities of an Algebraic curve
    Muhly, HT
    Zariski, O
    AMERICAN JOURNAL OF MATHEMATICS, 1939, 61 : 107 - 114
  • [30] MODULES WITH REGULAR SINGULARITIES ON A CURVE
    VANDENESSEN, A
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1989, 40 : 193 - 205