Microwave catalytic pyrolysis of solid digestate for high quality bio-oil and biochar

被引:3
|
作者
An, Qing [1 ,2 ]
Liu, Yang [1 ,3 ]
Cao, Xiaobing [1 ]
Yang, Pu [1 ]
Cheng, Long [1 ]
Ghazani, Mohammad Shanb [1 ]
Suota, Maria Juliane [1 ]
Bi, Xiaotao [1 ]
机构
[1] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada
[2] Tongji Univ, Mech Engn Coll, Thermal & Environm Engn Inst, Shanghai 201800, Peoples R China
[3] Tsinghua Univ, Sch Environm, Beijing 100084, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Solid digestate; Microwave pyrolysis; Catalytic pyrolysis; Bio-oil; Biochar; ASSISTED PYROLYSIS; BIOMASS; WASTE; SWITCHGRASS; CONVERSION;
D O I
10.1016/j.jaap.2024.106683
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Microwave-assisted catalytic pyrolysis (MACP) of solid digestate (SD) into value-added products presents a promising solution for waste SD. Both types of catalysts and reactor temperature critically influence the properties of MACP products. This study systematically investigated pyrolysis of SD mixed with different catalysts (K3PO4, 3 PO 4 , natural zeolite, and mixture of K3PO4 3 PO 4 and natural zeolite) at various pyrolysis temperatures (300, 400, and 500 degrees C) for bio-oil and biochar production. The results showed that higher temperatures led to reduced biooil and biochar yields, favoring gas production. The bio-oil derived from SD with 20 wt% K3PO4 3 PO 4 and 20 wt% natural zeolite at 500 degrees C exhibited the largest fraction of aromatic hydrocarbons, reaching 92.43 % and 91.56%, respectively. Catalytic pyroysis resulted in reduction in bio-oil acidity. Biochar specific surface area is influenced by both heating rate and temperature, with the highest surface area (207 m2/g), 2 /g), pore volume (0.2244 cm3/g), 3 /g), and a more regular pore structure being obtained at 500 degrees C and 66.1 degrees C/min with 20 wt% K3PO4. 3 PO 4 . This work demonstrated the feasibility of upgrading waste SD into value-added chemicals, materials, and energy-rich fuels by MACP. Notably, SD with 20 wt% K3PO4 3 PO 4 at 500 degrees C represents the optimal operating condition for both bio-oil and biochar production.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] High-quality bio-oil production via catalytic pyrolysis of biocrude oil from hydrothermal liquefaction of microalgae Spirulina
    Li, Hao
    Dong, Zhen
    Wang, Bao
    Wu, Wenfu
    Cao, Maojiong
    Zhang, Yuanhui
    Liu, Zhidan
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2023, 173
  • [42] Catalytic fast pyrolysis of hazelnut cupula: Characterization of bio-oil
    Keles, Sedat
    Kar, Turgay
    Akgun, Mithat
    Kaygusuz, Kamil
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2017, 39 (24) : 2216 - 2225
  • [43] Catalytic pyrolysis of woody oil over SiC foam-MCM41 catalyst for aromatic-rich bio-oil production in a dual microwave system
    Yu, Zhenting
    Jiang, Lin
    Wang, Yunpu
    Li, Yanzhi
    Ke, Linyao
    Yang, Qi
    Peng, Yujie
    Xu, Jiamin
    Dai, Leilei
    Wu, Qiuhao
    Liu, Yuhuan
    Ruan, Roger
    Xia, Donghua
    Jiang, Li
    JOURNAL OF CLEANER PRODUCTION, 2020, 255
  • [44] Microwave-assisted catalytic pyrolysis of commercial residual lignin with in-situ catalysts to produce homogenous bio-oil and high-yield biochar with enriched pores
    Zhong, Na
    Ren, Xueyong
    Cheng, Long
    Yamamoto, Minna
    Leskinen, Timo
    Lommi, Jukka
    Zhu, Hui
    Granstrom, Tom
    Saddler, Jack
    Bi, Xiaotao
    ENERGY CONVERSION AND MANAGEMENT, 2023, 295
  • [45] Co-pyrolysis of light bio-oil leached bamboo and heavy bio-oil: Effects of mass ratio, pyrolysis temperature, and residence time on the biochar
    Chen, Dengyu
    Zhuang, Xiaozhuang
    Gan, Ziyu
    Cen, Kehui
    Ba, Yuping
    Jia, Dongxia
    CHEMICAL ENGINEERING JOURNAL, 2022, 437
  • [46] Facile demineralization of biochar and its catalytic upgrading of bio-oil from fast pyrolysis of bagasse
    Zhang, Shuo
    Wu, Yunfei
    Wang, Yiming
    Zhong, Mei
    Wang, Guijin
    Ban, Yanpeng
    Zhao, Shun
    Hu, Haoquan
    Jin, Lijun
    FUEL, 2023, 349
  • [47] Integrating pyrolysis and ex-situ catalytic reforming by microwave heating to produce hydrocarbon-rich bio-oil from soybean soapstock
    Jiang, Lin
    Wang, Yunpu
    Dai, Leilei
    Yu, Zhenting
    Wu, Qiuhao
    Zhao, Yunfeng
    Liu, Yuhuan
    Ruan, Roger
    Ke, Linyao
    Peng, Yujie
    Xia, Donghua
    Jiang, Li
    BIORESOURCE TECHNOLOGY, 2020, 302
  • [48] Transformation of Bio-oil into BTX by Bio-oil Catalytic Cracking
    Zhu, Jiu-fang
    Wang, Ji-cong
    Li, Quan-xin
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2013, 26 (04) : 477 - 483
  • [49] Microwave catalytic co-pyrolysis of chlorella vulgaris and oily sludge: Characteristics and bio-oil analysis
    Chen, Chunxiang
    Ling, Hongjian
    Qiu, Song
    Huang, Xiaodong
    Fan, Dianzhao
    Zhao, Jian
    BIORESOURCE TECHNOLOGY, 2022, 360
  • [50] Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production
    Xie, Qinglong
    Peng, Peng
    Liu, Shiyu
    Min, Min
    Cheng, Yanling
    Wan, Yiqin
    Li, Yun
    Lin, Xiangyang
    Liu, Yuhuan
    Chen, Paul
    Ruan, Roger
    BIORESOURCE TECHNOLOGY, 2014, 172 : 162 - 168