Influence of Uric Acid on the Corrosion Behavior of AZ31 Magnesium Alloy in Simulated Body Fluid

被引:0
作者
Zhang, Y. [1 ]
Ma, D. Y. [1 ]
Dai, J. Y. [1 ]
Wu, L. P. [2 ]
机构
[1] Shenyang Univ, Sch Mech & Engn, Shenyang 110044, Peoples R China
[2] Chinese Acad Sci, Inst Met Res, Shenyang 110016, Peoples R China
关键词
corrosion behavior; Mg alloy; simulated body fluid; uric acid; SURFACE; HYDROXYAPATITE; URATE; DEGRADATION; RESISTANCE; COMPOSITE; MECHANISM; COATINGS; FILM;
D O I
10.1007/s11665-024-10083-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The action mechanism of uric acid, C5H4N4O3 (UA), and the effect of its concentration (0, 100, 416 and 500 mu M) on the corrosion behavior of AZ31 Mg alloy in simulated body fluid were unmasked using scanning electron microscopy, x-ray diffraction, Raman, x-ray photoelectron spectroscopy, electrochemical impedance spectroscopy, potentiostatic polarization, potentiodynamic polarization, and hydrogen evolution tests. It was shown that UA was initially dissociated into (C5H4N4O3)- (UA-) and precipitated as (C5H4N4O3)2Mg ((UA-)2Mg). With the generation of (UA-)2Mg, hydroxyapatite (HA) was continuously formed, enhancing the corrosion resistance of AZ31 Mg alloy. Subsequently, UA- was transformed into C5H2N4O3 and chelated with Ca in HA as Ca(C5H2N4O3), resulting in a loss of HA and undermining the corrosion resistance of AZ31 Mg alloy. UA inhibited the corrosion of AZ31 Mg alloy with an optimal concentration of 416 mu M. The inhibition of UA on the corrosion of AZ31 Mg alloy was closely related with the content of (UA-)2 Mg, Mg3(PO4)2, and Mg(OH)2 in the corrosion products.
引用
收藏
页码:12706 / 12722
页数:17
相关论文
共 72 条
[1]  
Abdulhameed, 2013, ENG TECH J, V31, P3382, DOI [10.30684/etj.31.17A.14, DOI 10.30684/ETJ.31.17A.14]
[2]   XPS analysis of chemical functions at the surface of Bacillus subtilis [J].
Ahimou, Francois ;
Boonaert, Christophe J. P. ;
Adriaensen, Yasmine ;
Jacques, Philippe ;
Thonart, Philippe ;
Paquot, Michel ;
Rouxhet, Paul G. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, 309 (01) :49-55
[3]   Theoretical study of interaction of urate with Li+, Na+, K+, Be2+, Mg2+, and Ca2+ metal cations [J].
Allen, Reeshemah N. ;
Shukla, M. K. ;
Burda, Jaroslav V. ;
Leszczynski, Jerzy .
JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (18) :6139-6144
[4]   Ellipsometric characterization of surface films on AZ31 magnesium alloy exposed to a Na2SO4 solution [J].
Almeida, D. S. S. ;
dos Santos, D. D. ;
Ferreira, N. B. G. ;
Correia, C. Q. ;
Gomes, B. C. ;
Ferreira, E. A. ;
Moreira, L. P. ;
de Castro, J. A. ;
Huguenin, J. A. O. ;
da Silva, L. .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2020, 9 (05) :10175-10183
[5]   Studies on the influence of chloride ion concentration and pH on the corrosion and electrochemical behaviour of AZ63 magnesium alloy [J].
Altun, H ;
Sen, S .
MATERIALS & DESIGN, 2004, 25 (07) :637-643
[6]   Fucoidan-based coating on magnesium alloy improves the hemocompatibility and pro-endothelialization potential for vascular stent application [J].
Bai, Lingchuang ;
Wang, Yahui ;
Xie, Jia ;
Zhao, Yuan ;
Guan, Shaokang .
MATERIALS & DESIGN, 2023, 233
[7]   A new look on the corrosion mechanism of magnesium: An EIS investigation at different pH [J].
Benbouzid, Abdelmoheiman Zakaria ;
Gomes, Maurilio Pereira ;
Costa, Isolda ;
Gharbi, Oumaima ;
Pebere, Nadine ;
Rossi, Jesualdo Luiz ;
Tran, Mai T. T. ;
Tribollet, Bernard ;
Turmine, Mireille ;
Vivier, Vincent .
CORROSION SCIENCE, 2022, 205
[8]   Physiology of Hyperuricemia and Urate-Lowering Treatments [J].
Benn, Caroline L. ;
Dua, Pinky ;
Gurrell, Rachel ;
Loudon, Peter ;
Pike, Andrew ;
Storer, R. Ian ;
Vangjeli, Ciara .
FRONTIERS IN MEDICINE, 2018, 5
[9]   Surface charge of hydroxyapatite and bone mineral [J].
Bertran, C. A. ;
Bertazzo, S. ;
Faria, L. P. .
BIOCERAMICS, VOL 19, PTS 1 AND 2, 2007, 330-332 :713-+
[10]   A layer-by-layer assembled coating for improved stress corrosion cracking on biomedical magnesium alloy in cell culture medium [J].
Chen, Lianxi ;
Tseng, Chuan-Ming ;
Qiu, Youmin ;
Yang, Junjie ;
Chang, Chi-Lung ;
Wang, Xiaojian ;
Li, Wei .
SURFACE & COATINGS TECHNOLOGY, 2020, 403