The widespread application of phenolic substances in the field of food, medicine and industry, is harmful to the environment and human health. Therefore, it is very important to develop a convenient and effective method to detect and degrade phenolic compounds. Herein, we report a new keggin-type polyoxometallate-based metal-organic complex self-assembled under solvothermal condition, {[Cu(dap)(3-PA)](4)(SiW12O40)(H2O)(2)}<middle dot>2H(2)O (1, dap = 1,2-diaminopropane, 3-HPA = 3-pyridineacrylic acid). 1 shows an interesting 1D ladder-like structure. As a bifunctional catalyst, 1 can be employed as a colorimetric sensor toward phenol with the relatively low detection limit (LOD) of 0.36 mu mol/L (S/N = 3) in the wide range (0.001-0.1 mmol/L). The title colorimetric sensor is applied to determine phenol in various water environment with good recoveries ranging from 95%-105%. In addition, 1 also exhibits excellent photocatalytic degradation toward phenol under visible light with the highest removal efficiency at 96% for 100 min and wide pH universality. The selectivity, stability and reliability of the detection of 1 towards phenol, as well as the detection for 4-chlorophenol, o-cresol, 4-nitrophenol and phloroglucinol were studied. Furthermore, the photocatalytic reaction kinetics and the mechanisms of photodegradation of phenol were also investigated in detail.