The upper bound for the first positive eigenvalue of Sub-Laplacian on a compact strictly pseudoconvex hypersurface

被引:0
|
作者
Lin, Guijuan [1 ]
Long, Sujuan [2 ]
Zhang, Qiqi [3 ]
机构
[1] Minnan Normal Univ, Sch Math & Stat, Zhangzhou 363000, Peoples R China
[2] Minjiang Univ, Sch Comp & Data Sci, Fuzhou 350108, Peoples R China
[3] Nanchang Hangkong Univ, Sch Math & Imformat Sci, Nanchang 330063, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 09期
基金
中国国家自然科学基金;
关键词
sub-Laplacian; upper bound; the first positive eigenvalue; compact real hypersurfaces; ellipsoids; KOHN-LAPLACIAN; OBATA THEOREM; SHARP UPPER; CURVATURE; MANIFOLDS;
D O I
10.3934/math.20241239
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M2n+1, theta) be a compact strictly pseudoconvex real hypersurfaces equipped with the pseudohermitian structure theta, and lambda 1 be the first positive eigenvalue of sub-Laplacian triangle b on (M2n+1, theta). In this paper, we will give the upper bound of lambda 1 under certain conditions that "Re triangle b rho j + rho j<overline> 2 triangle rho rho j + partial derivative rho 2 rho n-1 rho k rho jk <= 0 (for some j)" or "rho jk<overline> = delta jk" holds, and apply these results to the ellipsoids furthermore.
引用
收藏
页码:25376 / 25395
页数:20
相关论文
共 50 条