共 50 条
Molecular Docking, Synthesis and Evaluation for Antioxidant and Antibacterial Activity of New Oxazepane and Benzoxazepine Derivatives
被引:0
|作者:
Sager, Athra G.
[1
]
Abaies, Jawad Kadhim
[1
]
Katoof, Zeena R.
[1
]
机构:
[1] Univ Waist, Coll Sci, Dept Chem, Kut, Iraq
关键词:
Antioxidant;
Benzoxazepine;
Biological;
Docking;
Oxazepane;
D O I:
10.21123/bsj.2023.8553
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
In the field of molecular simulations, molecular docking is a method that can determine the optimal and preferred orientation of a certain molecule related to another when they are coupled to create a stable complex. The strength of the association, or binding affinity, between two molecules can be predicted using knowledge of their preferred orientation. In this study, a series of prepared compounds were evaluated for their binding modes, potential interactions, and target binding locations. Some derivatives 1,3-oxazepane, and 1,3-benzoxazepine were prepared from three Schiff bases compounds (1S-3S). The compounds (1S- 3S) were reacted with succinic anhydride and phthalic anhydride to obtain derivatives of 1,3- oxazepane and 1,3-benzoxazepine (1B-3C). The characterization of prepared compounds was achieved by methods of elemental analysis, FT-IR, 1 H, and 13 C-NMR spectral analysis. The antibacterial activity of the compounds (1B-3C) was recorded against some isolated bacteria including gram-negative ( Staphylococcus aureus), ), and gram-positive (E.coli) ) in parallel with Amoxicillin as a regular drug. Compounds (1B-3C) exhibited good values as antibacterial spreading from middling to perfect against the bacteria strains. Moreover, the antioxidant activity of the synthesized compounds (1B-3C) was evaluated using 2,2-diphenyl-1picrylhydrazyl. The results showed that compounds have the highest values as radical scavenging.
引用
收藏
页码:2289 / 2307
页数:19
相关论文