Multi-scale Spatio-temporal Attention Network for Traffic Flow Prediction

被引:0
|
作者
Li, Minghao [1 ]
Li, Jinhong [1 ]
Ta, Xuxiang [2 ]
Bai, Yanbo [3 ]
Hao, Xinzhe [1 ]
机构
[1] North China Univ Technol, Sch Informat, Beijing 100144, Peoples R China
[2] Beihang Univ, Natl Lab Software Dev Environm, Beijing 100083, Peoples R China
[3] Liaoning Tech Univ, Sch Elect & Informat Engn, Huludao 125000, Peoples R China
来源
ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT II, ICIC 2024 | 2024年 / 14876卷
关键词
Traffic Flow Prediction; Multi-scale Attention Graph Neural Networks; Pyramidal Temporal Network;
D O I
10.1007/978-981-97-5666-7_25
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traffic flow prediction has important implications for multiple fields, such as urban planning, traffic management and transportation. Accurate Traffic flow prediction helps improve transportation efficiency. At the same time, getting accurate traffic conditions can ensure traffic safety during special times. The key to accurate traffic flow prediction lies in the ability to accurately mine temporal and spatial dependencies, i.e., information on cycles and trends contained in historical time series and correlations between different locations in space. In recent years, a variety of algorithms have been used for traffic flow prediction, but all of them have their own limitations that lead to less accurate predictions in some cases. In this paper, we propose a multi-scale attention graph neural network model for traffic flow prediction, which captures multi-scale spatial dependencies through a multi-scale graph neural network. And a Pyramidal temporal network model is also proposed for mining temporal dependencies progressively from global to local. To validate our proposed method, we conduct extensive experiments on real-world traffic datasets to verify the effectiveness of our method.
引用
收藏
页码:294 / 305
页数:12
相关论文
共 50 条
  • [1] Dynamic Spatio-temporal traffic flow prediction based on multi fusion graph attention network
    Cheng, Manru
    Jiang, Guo-Ping
    Song, Yurong
    Yang, Chen
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7285 - 7291
  • [2] Spatio-Temporal attention-based decomposition and reconstruction network for urban traffic flow prediction
    Han, Dan
    Kan, Jicheng
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2025,
  • [3] A spatio-temporal grammar graph attention network with adaptive edge information for traffic flow prediction
    Zhao Zhang
    Xiaohong Jiao
    Applied Intelligence, 2023, 53 : 28787 - 28803
  • [4] A spatio-temporal grammar graph attention network with adaptive edge information for traffic flow prediction
    Zhang, Zhao
    Jiao, Xiaohong
    APPLIED INTELLIGENCE, 2023, 53 (23) : 28787 - 28803
  • [5] Spatio-temporal causal graph attention network for traffic flow prediction in intelligent transportation systems
    Zhao, Wei
    Zhang, Shiqi
    Wang, Bei
    Zhou, Bing
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [6] Attention Based Multi-scale Spatial-temporal Fusion Propagation Graph Network for Traffic Flow Prediction
    Tian, Yuxin
    Zhang, Qiliang
    Li, Xiaomeng
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT II, ICIC 2024, 2024, 14876 : 125 - 136
  • [7] Spatio-Temporal AutoEncoder for Traffic Flow Prediction
    Liu, Mingzhe
    Zhu, Tongyu
    Ye, Junchen
    Meng, Qingxin
    Sun, Leilei
    Du, Bowen
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (05) : 5516 - 5526
  • [8] Spatio-temporal graph attention networks for traffic prediction
    Ma, Chuang
    Yan, Li
    Xu, Guangxia
    TRANSPORTATION LETTERS-THE INTERNATIONAL JOURNAL OF TRANSPORTATION RESEARCH, 2024, 16 (09): : 978 - 988
  • [9] Dynamic Spatio-Temporal Multi-Scale Representation for Bus Ridership Prediction
    Peng, Lilan
    Wang, Xiu
    Lu, Hongchun
    Guo, Xiangyu
    Li, Tianrui
    Ji, Shenggong
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [10] MS-Net: Multi-Source Spatio-Temporal Network for Traffic Flow Prediction
    Fang, Shen
    Prinet, Veronique
    Chang, Jianlong
    Werman, Michael
    Zhang, Chunxia
    Xiang, Shiming
    Pan, Chunhong
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) : 7142 - 7155