A Survey of Indoor 3D Reconstruction Based on RGB-D Cameras

被引:0
|
作者
Zhu, Jinlong [1 ]
Gao, Changbo [1 ]
Sun, Qiucheng [1 ]
Wang, Mingze [1 ]
Deng, Zhengkai [1 ]
机构
[1] Changchun Normal Univ, Sch Comp Sci & Technol, Changchun 130032, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Cameras; Three-dimensional displays; Heuristic algorithms; Dynamics; Solid modeling; Reconstruction algorithms; Surface treatment; Indoor environment; Neural radiance field; 3D reconstruction; indoor scenes; static scenes; dynamic scenes; deep learning; neural radiance fields; MONOCULAR SLAM; RECOGNITION; LOCALIZATION; ENVIRONMENTS; TRACKING;
D O I
10.1109/ACCESS.2024.3443065
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the advancement of consumer-grade RGB-D cameras, obtaining depth information for indoor 3D spaces has become increasingly accessible. This paper systematically reviews 3D reconstruction algorithms for indoor scenes using these cameras, serving as a reference for future research. We cover reconstruction processes and optimization algorithms for both static and dynamic scenes. Additionally, we discuss commonly used datasets, evaluation metrics, and the performance of various reconstruction algorithms. Findings indicate that the balance between reconstruction quality and speed in static scene reconstruction, as well as deformation, occlusion, and fast motion of objects in dynamic scenes are currently major concerns. Deep learning and Neural Radiance Fields (NeRF) are poised to provide new perspectives and methods to address these challenges.
引用
收藏
页码:112742 / 112766
页数:25
相关论文
共 50 条
  • [21] High Quality 3D Reconstruction of Indoor Finvironments using RGB-D Sensors
    Wang, Jun
    Huang, Shoudong
    Zhao, Liang
    Ge, Janet
    He, Sean
    Zhang, Chengqi
    Wang, Xiangyu
    PROCEEDINGS OF THE 2017 12TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2017, : 1739 - 1744
  • [22] Indoor 3D Reconstruction of Buildings via Azure Kinect RGB-D Camera
    Delasse, Chaimaa
    Lafkiri, Hamza
    Hajji, Rafika
    Rached, Ishraq
    Landes, Tania
    SENSORS, 2022, 22 (23)
  • [23] FusionMLS: Highly dynamic 3D reconstruction with consumer-grade RGB-D cameras
    Meerits S.
    Thomas D.
    Nozick V.
    Saito H.
    Computational Visual Media, 2018, 4 (4) : 287 - 303
  • [24] Comparison of RGB-D sensors for 3D reconstruction
    da Silva Neto, Jose Gomes
    da Lima Silva, Pedro Jorge
    Figueredo, Filipe
    Xavier Natario Teixeira, Joao Marcelo
    Teichrieb, Veronica
    2020 22ND SYMPOSIUM ON VIRTUAL AND AUGMENTED REALITY (SVR 2020), 2020, : 252 - 261
  • [25] Editorial RGB-D Sensors and 3D Reconstruction
    Lv, Zhihan
    Mauri, Jaime Lloret
    Song, Houbing
    IEEE SENSORS JOURNAL, 2020, 20 (20) : 11751 - 11752
  • [26] Robust 3D Reconstruction With an RGB-D Camera
    Wang, Kangkan
    Zhang, Guofeng
    Bao, Hujun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (11) : 4893 - 4906
  • [27] Indoor Scene Reconstruction Using a Rotating Device and Multiple RGB-D Cameras
    Zhu, Zunjie
    Wei, Yuxin
    Lu, Rongfeng
    Xu, Chenghao
    Le, Xiang
    Zheng, Bolun
    Yan, Chenggang
    Xu, Feng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [28] LOW COST AND EFFICIENT 3D INDOOR MAPPING USING MULTIPLE CONSUMER RGB-D CAMERAS
    Chen, C.
    Yang, B. S.
    Song, S.
    XXIII ISPRS CONGRESS, COMMISSION I, 2016, 41 (B1): : 169 - 174
  • [29] 3D Registration in Dark Environments Using RGB-D Cameras
    Yousif, Khalid
    Bab-Hadiashar, Alireza
    Hoseinnezhad, Reza
    2013 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES & APPLICATIONS (DICTA), 2013, : 51 - 58
  • [30] Continuous 3D Face Authentication using RGB-D Cameras
    Segundo, Mauricio Pamplona
    Sarkar, Sudeep
    Goldgof, Dmitry
    Silva, Luciano
    Bellon, Olga
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2013, : 64 - 69