Low Mach number limit on perforated domains for the evolutionary Navier-Stokes-Fourier system

被引:0
作者
Basaric, Danica [1 ]
Chaudhuri, Nilasis [2 ]
机构
[1] Politecn Milan, Dept Math, Via E Bonardi 9, I-20133 Milan, Italy
[2] Univ Warsaw, Fac Math Informat & Mech, Ul Banacha 2, Warsaw, Poland
基金
英国工程与自然科学研究理事会;
关键词
Navier-Stokes-Fourier system; low Mach number limit; homogenization; Oberbeck-Boussinesq approximation; INCOMPRESSIBLE LIMIT; VOLUME DISTRIBUTION; TINY HOLES; HOMOGENIZATION; EQUATIONS;
D O I
10.1088/1361-6544/ad3da9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Navier-Stokes-Fourier system describing the motion of a compressible, viscous and heat-conducting fluid on a domain perforated by tiny holes. First, we identify a class of dissipative solutions to the Oberbeck-Boussinesq approximation as a low Mach number limit of the primitive system. Secondly, by proving the weak-strong uniqueness principle, we obtain strong convergence to the target system on the lifespan of the strong solution.
引用
收藏
页数:37
相关论文
共 28 条
[21]   Homogenization of the compressible Navier-Stokes equations in domains with very tiny holes [J].
Lu, Yong ;
Schwarzacher, Sebastian .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (04) :1371-1406
[22]   Homogenization of the compressible Navier-Stokes equations in a porous medium [J].
Masmoudi, N .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 :885-906
[23]   HOMOGENIZATION OF NONSTATIONARY NAVIER-STOKES EQUATIONS IN A DOMAIN WITH A GRAINED BOUNDARY [J].
MIKELIC, A .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1991, 158 :167-179
[24]   Homogenization of the two-dimensional evolutionary compressible Navier-Stokes equations [J].
Necasova, Sarka ;
Oschmann, Florian .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (06)
[25]   Homogenization problems for the compressible Navier-Stokes system in 2D perforated domains [J].
Necasova, Sarka ;
Pan, Jiaojiao .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (12) :7859-7873
[26]   Homogenization of the unsteady compressible Navier-Stokes equations for adiabatic exponent γ > 3 [J].
Oschmann, Florian ;
Pokorny, Milan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 377 :271-296
[27]   Homogenization of the evolutionary compressible Navier-Stokes-Fourier system in domains with tiny holes [J].
Pokorny, Milan ;
Skrisovsky, Emil .
JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2021, 7 (02) :361-391
[28]  
Tartar L., 1980, Non-homogeneous media and vibration theory