Low Mach number limit on perforated domains for the evolutionary Navier-Stokes-Fourier system

被引:0
作者
Basaric, Danica [1 ]
Chaudhuri, Nilasis [2 ]
机构
[1] Politecn Milan, Dept Math, Via E Bonardi 9, I-20133 Milan, Italy
[2] Univ Warsaw, Fac Math Informat & Mech, Ul Banacha 2, Warsaw, Poland
基金
英国工程与自然科学研究理事会;
关键词
Navier-Stokes-Fourier system; low Mach number limit; homogenization; Oberbeck-Boussinesq approximation; INCOMPRESSIBLE LIMIT; VOLUME DISTRIBUTION; TINY HOLES; HOMOGENIZATION; EQUATIONS;
D O I
10.1088/1361-6544/ad3da9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Navier-Stokes-Fourier system describing the motion of a compressible, viscous and heat-conducting fluid on a domain perforated by tiny holes. First, we identify a class of dissipative solutions to the Oberbeck-Boussinesq approximation as a low Mach number limit of the primitive system. Secondly, by proving the weak-strong uniqueness principle, we obtain strong convergence to the target system on the lifespan of the strong solution.
引用
收藏
页数:37
相关论文
共 28 条
[1]   THE OBERBECK-BOUSSINESQ SYSTEM WITH NON-LOCAL BOUNDARY CONDITIONS [J].
Abbatiello, Anna ;
Feireisl, Eduard .
QUARTERLY OF APPLIED MATHEMATICS, 2023, 81 (02) :297-306
[2]   On a class of generalized solutions to equations describing incompressible viscous fluids [J].
Abbatiello, Anna ;
Feireisl, Eduard .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (03) :1183-1195
[3]   Low mach number limit of the full Navier-Stokes equations [J].
Alazard, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 180 (01) :1-73
[4]  
ALLAIRE G, 1991, ARCH RATION MECH AN, V113, P209, DOI [10.1007/BF00375065, 10.1007/BF00375066]
[6]   Γ-convergence for nearly incompressible fluids [J].
Bella, Peter ;
Feireisl, Eduard ;
Oschmann, Florian .
JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (09)
[7]   Inverse of Divergence and Homogenization of Compressible Navier-Stokes Equations in Randomly Perforated Domains [J].
Bella, Peter ;
Oschmann, Florian .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2023, 247 (02)
[8]   Time-periodic solutions for a generalized Boussinesq model with Neumann boundary conditions for temperature [J].
Climent-Ezquerra, Blanca ;
Guillen-Gonzalez, Francisco ;
Rojas-Medar, Marko Antonio .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2085) :2153-2164
[9]   Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions [J].
Desjardins, B ;
Grenier, E ;
Lions, PL ;
Masmoudi, N .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1999, 78 (05) :461-471
[10]   THE INVERSE OF THE DIVERGENCE OPERATOR ON PERFORATED DOMAINS WITH APPLICATIONS TO HOMOGENIZATION PROBLEMS FOR THE COMPRESSIBLE NAVIER-STOKES SYSTEM [J].
Diening, Lars ;
Feireisl, Eduard ;
Lu, Yong .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (03) :851-868