The Gromov-Wasserstein Distance Between Spheres

被引:0
|
作者
Arya, Shreya [1 ]
Auddy, Arnab [2 ]
Clark, Ranthony A. [3 ]
Lim, Sunhyuk [4 ]
Memoli, Facundo [5 ]
Packer, Daniel [5 ]
机构
[1] Univ Penn, Dept Math, 209 S 33rd St, Philadelphia, PA 19104 USA
[2] Ohio State Univ, Dept Stat, 1958 Neil Ave, Columbus, OH 43210 USA
[3] Duke Univ, Dept Math, 120 Sci Dr, Durham, NC 27710 USA
[4] Sungkyunkwan Univ, Dept Math, Suwon 16419, Gyeonggi Do, South Korea
[5] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
关键词
Gromov-Wasserstein distances; Metric geometry; Metric-measure spaces; Optimal transport; Monge maps; SHAPE;
D O I
10.1007/s10208-024-09678-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Gromov-Wasserstein distance-a generalization of the usual Wasserstein distance-permits comparing probability measures defined on possibly different metric spaces. Recently, this notion of distance has found several applications in Data Science and in Machine Learning. With the goal of aiding both the interpretability of dissimilarity measures computed through the Gromov-Wasserstein distance and the assessment of the approximation quality of computational techniques designed to estimate the Gromov-Wasserstein distance, we determine the precise value of a certain variant of the Gromov-Wasserstein distance between unit spheres of different dimensions. Indeed, we consider a two-parameter family {dGWp,q}p,q=1 infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{d_{{{\text {GW}}}p,q}\}_{p,q=1}<^>{\infty }$$\end{document} of Gromov-Wasserstein distances between metric measure spaces. By exploiting a suitable interaction between specific values of the parameters p and q and the metric of the underlying spaces, we are able to determine the exact value of the distance dGW4,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{{{\text {GW}}}4,2}$$\end{document} between all pairs of unit spheres of different dimensions endowed with their Euclidean distance and their uniform measure.
引用
收藏
页数:56
相关论文
共 50 条
  • [41] The Gromov–Hausdorff Distance between Vertex Sets of Regular Polygons Inscribed in a Single Circle
    T. K. Talipov
    Moscow University Mathematics Bulletin, 2023, 78 : 130 - 135
  • [42] Hyperbolic Wasserstein Distance for Shape Indexing
    Shi, Jie
    Wang, Yalin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (06) : 1362 - 1376
  • [43] Estimation of smooth densities in Wasserstein distance
    Weed, Jonathan
    Berthet, Quentin
    CONFERENCE ON LEARNING THEORY, VOL 99, 2019, 99
  • [44] Approximate Bayesian computation with the Wasserstein distance
    Bernton, Espen
    Jacob, Pierre E.
    Gerber, Mathieu
    Robert, Christian P.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2019, 81 (02) : 235 - 269
  • [45] MULTI-VIEW WASSERSTEIN DISCRIMINANT ANALYSIS WITH ENTROPIC REGULARIZED WASSERSTEIN DISTANCE
    Kasai, Hiroyuki
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 6039 - 6043
  • [46] Topological data assimilation using Wasserstein distance
    Li, Long
    Vidard, Arthur
    Le Dimet, Francois-Xavier
    Ma, Jianwei
    INVERSE PROBLEMS, 2019, 35 (01)
  • [47] Minimax confidence intervals for the Sliced Wasserstein distance
    Manole, Tudor
    Balakrishnan, Sivaraman
    Wasserman, Larry
    ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (01): : 2252 - 2345
  • [48] Partial ordered Wasserstein distance for sequential data
    Doan, Tung
    Phan, Tuan
    Nguyen, Phu
    Than, Khoat
    Visani, Muriel
    Takasu, Atsuhiro
    NEUROCOMPUTING, 2024, 595
  • [49] Correcting nuisance variation using Wasserstein distance
    Tabak, Gil
    Fan, Minjie
    Yang, Samuel
    Hoyer, Stephan
    Davis, Geoffrey
    PEERJ, 2020, 8
  • [50] Multi-Dimensional Fused Gromov Wasserstein Discrepancy for Edge-Attributed Graphs
    Kawano, Keisuke
    Koide, Satoshi
    Shiokawa, Hiroaki
    Amagasa, Toshiyuki
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2024, E107D (05) : 683 - 693