The Gromov-Wasserstein Distance Between Spheres

被引:0
|
作者
Arya, Shreya [1 ]
Auddy, Arnab [2 ]
Clark, Ranthony A. [3 ]
Lim, Sunhyuk [4 ]
Memoli, Facundo [5 ]
Packer, Daniel [5 ]
机构
[1] Univ Penn, Dept Math, 209 S 33rd St, Philadelphia, PA 19104 USA
[2] Ohio State Univ, Dept Stat, 1958 Neil Ave, Columbus, OH 43210 USA
[3] Duke Univ, Dept Math, 120 Sci Dr, Durham, NC 27710 USA
[4] Sungkyunkwan Univ, Dept Math, Suwon 16419, Gyeonggi Do, South Korea
[5] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
关键词
Gromov-Wasserstein distances; Metric geometry; Metric-measure spaces; Optimal transport; Monge maps; SHAPE;
D O I
10.1007/s10208-024-09678-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Gromov-Wasserstein distance-a generalization of the usual Wasserstein distance-permits comparing probability measures defined on possibly different metric spaces. Recently, this notion of distance has found several applications in Data Science and in Machine Learning. With the goal of aiding both the interpretability of dissimilarity measures computed through the Gromov-Wasserstein distance and the assessment of the approximation quality of computational techniques designed to estimate the Gromov-Wasserstein distance, we determine the precise value of a certain variant of the Gromov-Wasserstein distance between unit spheres of different dimensions. Indeed, we consider a two-parameter family {dGWp,q}p,q=1 infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{d_{{{\text {GW}}}p,q}\}_{p,q=1}<^>{\infty }$$\end{document} of Gromov-Wasserstein distances between metric measure spaces. By exploiting a suitable interaction between specific values of the parameters p and q and the metric of the underlying spaces, we are able to determine the exact value of the distance dGW4,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{{{\text {GW}}}4,2}$$\end{document} between all pairs of unit spheres of different dimensions endowed with their Euclidean distance and their uniform measure.
引用
收藏
页数:56
相关论文
共 50 条
  • [31] Irregularity of Distribution in Wasserstein Distance
    Cole Graham
    Journal of Fourier Analysis and Applications, 2020, 26
  • [32] Computing Wasserstein-p Distance Between Images with Linear Cost
    Chen, Yidong
    Li, Chen
    Lu, Zhonghua
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 509 - 518
  • [33] Wasserstein distance to independence models
    Celik, Turku Ozluem
    Jamneshan, Asgar
    Montufar, Guido
    Sturmfels, Bernd
    Venturello, Lorenzo
    JOURNAL OF SYMBOLIC COMPUTATION, 2021, 104 : 855 - 873
  • [34] Approximation algorithms for 1-Wasserstein distance between persistence diagrams
    Chen, Samantha
    Wang, Yusu
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2025, 129
  • [35] Irregularity of Distribution in Wasserstein Distance
    Graham, Cole
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (05)
  • [36] The Wasserstein distance to the circular law
    Jalowy, Jonas
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (04): : 2285 - 2307
  • [37] On parameter estimation with the Wasserstein distance
    Bernton, Espen
    Jacob, Pierre E.
    Gerber, Mathieu
    Robert, Christian P.
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2019, 8 (04) : 657 - 676
  • [38] Efficient estimation of the modified Gromov-Hausdorff distance between unweighted graphs
    Oles, Vladyslav
    Lemons, Nathan
    Panchenko, Alexander
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2024, 48 (02)
  • [39] Equivalence between dimensional contractions in Wasserstein distance and the curvature-dimension condition
    Bolley, Francois
    Gentil, Ivan
    Guillin, Arnaud
    Kuwada, Kazumasa
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2018, 18 (03) : 845 - 880
  • [40] Path connectivity of spheres in the Gromov-Hausdorff class
    Ivanov, A.
    Tsvetnikov, R.
    Tuzhilin, A.
    TOPOLOGY AND ITS APPLICATIONS, 2023, 329