The Gromov-Wasserstein Distance Between Spheres

被引:0
|
作者
Arya, Shreya [1 ]
Auddy, Arnab [2 ]
Clark, Ranthony A. [3 ]
Lim, Sunhyuk [4 ]
Memoli, Facundo [5 ]
Packer, Daniel [5 ]
机构
[1] Univ Penn, Dept Math, 209 S 33rd St, Philadelphia, PA 19104 USA
[2] Ohio State Univ, Dept Stat, 1958 Neil Ave, Columbus, OH 43210 USA
[3] Duke Univ, Dept Math, 120 Sci Dr, Durham, NC 27710 USA
[4] Sungkyunkwan Univ, Dept Math, Suwon 16419, Gyeonggi Do, South Korea
[5] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
关键词
Gromov-Wasserstein distances; Metric geometry; Metric-measure spaces; Optimal transport; Monge maps; SHAPE;
D O I
10.1007/s10208-024-09678-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Gromov-Wasserstein distance-a generalization of the usual Wasserstein distance-permits comparing probability measures defined on possibly different metric spaces. Recently, this notion of distance has found several applications in Data Science and in Machine Learning. With the goal of aiding both the interpretability of dissimilarity measures computed through the Gromov-Wasserstein distance and the assessment of the approximation quality of computational techniques designed to estimate the Gromov-Wasserstein distance, we determine the precise value of a certain variant of the Gromov-Wasserstein distance between unit spheres of different dimensions. Indeed, we consider a two-parameter family {dGWp,q}p,q=1 infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{d_{{{\text {GW}}}p,q}\}_{p,q=1}<^>{\infty }$$\end{document} of Gromov-Wasserstein distances between metric measure spaces. By exploiting a suitable interaction between specific values of the parameters p and q and the metric of the underlying spaces, we are able to determine the exact value of the distance dGW4,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{{{\text {GW}}}4,2}$$\end{document} between all pairs of unit spheres of different dimensions endowed with their Euclidean distance and their uniform measure.
引用
收藏
页数:56
相关论文
共 50 条
  • [21] The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation
    Sejourne, Thibault
    Vialard, Francois-Xavier
    Peyre, Gabriel
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [22] Sampled Gromov Wasserstein
    Tanguy Kerdoncuff
    Rémi Emonet
    Marc Sebban
    Machine Learning, 2021, 110 : 2151 - 2186
  • [23] Sampled Gromov Wasserstein
    Kerdoncuff, Tanguy
    Emonet, Remi
    Sebban, Marc
    MACHINE LEARNING, 2021, 110 (08) : 2151 - 2186
  • [25] Gromov–Wasserstein Distances and the Metric Approach to Object Matching
    Facundo Mémoli
    Foundations of Computational Mathematics, 2011, 11 : 417 - 487
  • [26] On the Bures-Wasserstein distance between positive definite matrices
    Bhatia, Rajendra
    Jain, Tanvi
    Lim, Yongdo
    EXPOSITIONES MATHEMATICAE, 2019, 37 (02) : 165 - 191
  • [27] Scalable Gromov–Wasserstein Based Comparison of Biological Time Series
    Natalia Kravtsova
    Reginald L. McGee II
    Adriana T. Dawes
    Bulletin of Mathematical Biology, 2023, 85
  • [28] Exact statistical inference for the Wasserstein distance by selective inferenceSelective Inference for the Wasserstein Distance
    Vo Nguyen Le Duy
    Ichiro Takeuchi
    Annals of the Institute of Statistical Mathematics, 2023, 75 : 127 - 157
  • [29] Evolution of the Wasserstein distance between the marginals of two Markov processes
    Alfonsi, Aurelien
    Corbetta, Jacopo
    Jourdain, Benjamin
    BERNOULLI, 2018, 24 (4A) : 2461 - 2498
  • [30] Exact statistical inference for the Wasserstein distance by selective inference Selective Inference for the Wasserstein Distance
    Le Duy, Vo Nguyen
    Takeuchi, Ichiro
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2023, 75 (01) : 127 - 157