Synergy of Model-driven and Data-driven Approaches in a Dynamic Network Loading Problem

被引:0
|
作者
Kurtc, Valentina [1 ,3 ]
Prokhorov, Andrey [2 ,3 ]
机构
[1] Peter Great St Petersburg Polytech Univ, Polytech Skaya 29, St Petersburg 195251, Russia
[2] HSE Univ, Pokrovsky Bulvar 11, Moscow 109028, Russia
[3] Ltd Liabil Co A S Transproekt, Saperniy 5A, St Petersburg 191014, Russia
来源
TRAFFIC AND GRANULAR FLOW 2022, TGF 2022 | 2024年 / 443卷
关键词
Dynamic Network Loading; Stationary Road Sensor Data; Machine Learning;
D O I
10.1007/978-981-99-7976-9_60
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Modern dynamic models of traffic flow and especially dynamic network loading (DNL) models are a powerful approach to predict traffic flow dynamics in a short-term sense (minutes or hours ahead). Such models should be the core element of any intelligent transportation system to make safer and smarter use of transport networks. Nowadays a variety of traffic data is becoming more and more accurate and available. Online traffic data can be incorporated in DNL model to take into account nonrecurring events (e.g. accidents, road closures or unexpected bad weather conditions). This idea can increase the accuracy of short-term prediction and make traffic flow management more effective. In our research we suggest to combine traditional model-driven approach with a data-driven prediction. As a DNL model we use the link transmission model in cooperation with a dynamic user equilibrium algorithm to identify the routes. Traffic data are the values of speed and flow with a 5-minutes time step, obtained from stationary road sensors. We use the rolling horizon approach, that is, every 5-minutes model constructs 1-hour forecast incorporating actual sensor data. Moreover, we use methods of machine learning to predict the sensor data for the next hour and take it into account while calculating the forecast for the current hour ahead.
引用
收藏
页码:487 / 494
页数:8
相关论文
共 50 条
  • [41] CSI-Based Proximity Estimation: Data-Driven and Model-Based Approaches
    Bezerra, Lucas C. D.
    Kouzayha, Nour
    Elsawy, Hesham
    Bader, Ahmed
    Al-Naffouri, Tareq Y.
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2024, 5 : 97 - 111
  • [42] Optimal trajectory planning combining model-based and data-driven hybrid approaches
    Ghnatios, Chady
    Di Lorenzo, Daniele
    Champaney, Victor
    Ammar, Amine
    Cueto, Elias
    Chinesta, Francisco
    ADVANCED MODELING AND SIMULATION IN ENGINEERING SCIENCES, 2024, 11 (01)
  • [43] Data-Driven Approaches for Wildfire Mapping and Prediction Assessment Using a Convolutional Neural Network (CNN)
    Kanwal, Rida
    Rafaqat, Warda
    Iqbal, Mansoor
    Weiguo, Song
    REMOTE SENSING, 2023, 15 (21)
  • [44] Data-Driven Screening of Network Constraints for Unit Commitment
    Pineda, Salvador
    Morales, Juan Miguel
    Jimenez-Cordero, Asuncion
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (05) : 3695 - 3705
  • [45] A dynamic data-driven method for dealing with model structural error in soil moisture data assimilation
    Zhang, Qiuru
    Shi, Liangsheng
    Holzman, Mauro
    Ye, Ming
    Wang, Yakun
    Carmona, Facundo
    Zha, Yuanyuan
    ADVANCES IN WATER RESOURCES, 2019, 132
  • [46] Data-Driven Network Analysis for Anomaly Traffic Detection
    Alam, Shumon
    Alam, Yasin
    Cui, Suxia
    Akujuobi, Cajetan
    SENSORS, 2023, 23 (19)
  • [47] Data-driven approaches to study the spectral properties of chemical structures
    Masmali, Ibtisam
    Nadeem, Muhammad Faisal
    Mufti, Zeeshan Saleem
    Ahmad, Ali
    Koam, Ali N. A.
    Ghazwani, Haleemah
    HELIYON, 2024, 10 (17)
  • [48] Data-Driven Approaches for Distribution Transformer Health Monitoring: A Review
    Mogos, Aman Samson
    Liang, Xiaodong
    Chung, C. Y.
    2023 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CCECE, 2023,
  • [49] Data-driven approaches for unveiling the neurophysiological functions of the auditory system
    Furukawa, Shigeto
    Terashima, Hiroki
    Koumura, Takuya
    Tsukano, Hiroaki
    ACOUSTICAL SCIENCE AND TECHNOLOGY, 2020, 41 (01) : 63 - 66
  • [50] ADMIRE: collaborative data-driven and model-driven intelligent routing engine for traffic grooming in multi-layer X-Haul networks
    Zhang, Jiawei
    Chen, Zhuo
    Zhang, Bojun
    Wang, Ruikun
    Ma, Huangxu
    Ji, Yuefeng
    JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2023, 15 (02) : A63 - A73