Synergy of Model-driven and Data-driven Approaches in a Dynamic Network Loading Problem

被引:0
|
作者
Kurtc, Valentina [1 ,3 ]
Prokhorov, Andrey [2 ,3 ]
机构
[1] Peter Great St Petersburg Polytech Univ, Polytech Skaya 29, St Petersburg 195251, Russia
[2] HSE Univ, Pokrovsky Bulvar 11, Moscow 109028, Russia
[3] Ltd Liabil Co A S Transproekt, Saperniy 5A, St Petersburg 191014, Russia
来源
TRAFFIC AND GRANULAR FLOW 2022, TGF 2022 | 2024年 / 443卷
关键词
Dynamic Network Loading; Stationary Road Sensor Data; Machine Learning;
D O I
10.1007/978-981-99-7976-9_60
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Modern dynamic models of traffic flow and especially dynamic network loading (DNL) models are a powerful approach to predict traffic flow dynamics in a short-term sense (minutes or hours ahead). Such models should be the core element of any intelligent transportation system to make safer and smarter use of transport networks. Nowadays a variety of traffic data is becoming more and more accurate and available. Online traffic data can be incorporated in DNL model to take into account nonrecurring events (e.g. accidents, road closures or unexpected bad weather conditions). This idea can increase the accuracy of short-term prediction and make traffic flow management more effective. In our research we suggest to combine traditional model-driven approach with a data-driven prediction. As a DNL model we use the link transmission model in cooperation with a dynamic user equilibrium algorithm to identify the routes. Traffic data are the values of speed and flow with a 5-minutes time step, obtained from stationary road sensors. We use the rolling horizon approach, that is, every 5-minutes model constructs 1-hour forecast incorporating actual sensor data. Moreover, we use methods of machine learning to predict the sensor data for the next hour and take it into account while calculating the forecast for the current hour ahead.
引用
收藏
页码:487 / 494
页数:8
相关论文
共 50 条
  • [1] Combining Data-Driven and Model-Driven Approaches for Optimal Distributed Control of Standalone Microgrid
    Ahangar, Parvaiz Ahmad
    Lone, Shameem Ahmad
    Gupta, Neeraj
    SUSTAINABILITY, 2023, 15 (16)
  • [2] Data-driven approaches in FinTech: a survey
    Tian, Xin
    He, Jing Selena
    Han, Meng
    INFORMATION DISCOVERY AND DELIVERY, 2021, 49 (02) : 123 - 135
  • [3] Pedestrian inertial navigation: An overview of model and data-driven approaches
    Klein, Itzik
    RESULTS IN ENGINEERING, 2025, 25
  • [4] Integrating knowledge-driven and data-driven approaches to modeling
    Todorovski, L
    Dzeroski, S
    ECOLOGICAL MODELLING, 2006, 194 (1-3) : 3 - 13
  • [5] Deep Neural Network Feature Selection Approaches for Data-Driven Prognostic Model of Aircraft Engines
    Khumprom, Phattara
    Grewell, David
    Yodo, Nita
    AEROSPACE, 2020, 7 (09)
  • [6] Hybrid model-driven and data-driven control method based on machine learning algorithm in energy hub and application
    Cai, Qingsen
    Luo, XingQi
    Wang, Peng
    Gao, Chunyang
    Zhao, Peiyu
    APPLIED ENERGY, 2022, 305
  • [7] Data-Driven Methodology to Extract Stress Fields in Materials Subjected to Dynamic Loading
    Gupta, Vijendra
    Kidane, Addis
    ADDITIVE AND ADVANCED MANUFACTURING, INVERSE PROBLEM METHODOLOGIES AND MACHINE LEARNING AND DATA SCIENCE, VOL 4, 2023, 2024, : 97 - 102
  • [8] Classification for Dynamical Systems: Model-Based and Data-Driven Approaches
    Battistelli, Giorgio
    Tesi, Pietro
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (04) : 1741 - 1748
  • [9] Organic Solvent Nanofiltration and Data-Driven Approaches
    Piccard, Pieter-Jan
    Borges, Pedro
    Cleuren, Bart
    Hooyberghs, Jef
    Buekenhoudt, Anita
    SEPARATIONS, 2023, 10 (09)
  • [10] A data-driven newsvendor problem: From data to decision
    Huber, Jakob
    Mueller, Sebastian
    Fleischmann, Moritz
    Stuckenschmidt, Heiner
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2019, 278 (03) : 904 - 915