Numerical study of gas-solid flow characteristics of cylindrical fluidized beds based on coarse-grained CFD-DEM method

被引:0
|
作者
Tang, Zhong [1 ,2 ]
Li, Zhenzhong [1 ,2 ]
Huang, Shanglong [1 ,2 ]
Yang, Chen [1 ,2 ]
机构
[1] Chongqing Univ, Key Lab Lowgrade Energy Utilizat Technol & Syst, Minist Educ China, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Sch Energy & Power Engn, Chongqing, Peoples R China
基金
中国国家自然科学基金;
关键词
CFD-DEM; coarse-grained; gas-solid fluidized bed; periodic boundary conditions; two-fluid model; SPOUTED BED; MODEL; HYDRODYNAMICS; SIMULATIONS; PARTICLES; DYNAMICS; GELDART; PREDICT;
D O I
10.1002/cjce.25455
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The existing researches lack the comprehensive comparison of the performance of two-fluid model (TFM) and computational fluid dynamics-discrete element model (CFD-DEM) using a cylindrical fluidized bed as a research object. In addition, the applicability of rotational periodic boundary conditions in CFD-DEM simulations of cylindrical fluidized beds is still unclear. Therefore, taking cylindrical fluidized bed as the object and studying the performance of different simulation methods can provide guidance for the selection of simulation methods in subsequent related studies. In the present study, TFM and coarse-grained CFD-DEM were used in simulations of the fluidized bed to evaluate the performance of different numerical methods. Furthermore, the applicability of rotating periodic boundary conditions in CFD-DEM simulations was investigated. The results show that TFM and coarse-grained CFD-DEM perform in general agreement in predicting macro variables (e.g., overall pressure drop and bed height). However, radial void fraction distribution and void fraction probability density function (PDF) distribution of CFD-DEM agreed better with the experimental data. CFD-DEM simulations with rotational periodic boundary conditions applied showed lower predicted void fraction PDF peaks at packed bed heights and poorly modelling particle mixing in the central of cylindrical fluidized bed due to changes in the boundary conditions as well as the number of particle parcels. Therefore, both TFM and CFD-DEM can obtain reasonable macro variables, but CFD-DEM predicted more accurate gas-solid two-phase distribution. The CFD-DEM with rotating periodic boundary conditions could not reasonably predict the pressure drop and gas-solid two-phase distribution inside the cylindrical fluidized bed.
引用
收藏
页码:1917 / 1936
页数:20
相关论文
共 50 条
  • [21] Coarse-grained CFD-DEM simulation to determine the multiscale characteristics of the air dense medium fluidized bed
    Jia, Ying
    Zhang, Yong
    Xu, Ji
    Duan, Chenlong
    Zhao, Yuemin
    Ge, Wei
    POWDER TECHNOLOGY, 2021, 389 : 270 - 277
  • [22] CFD-DEM Simulation Study on Heat and Mass Transfer of Wheat Particles in Gas-Solid Fluidized Bed
    Yang, Kaimin
    Li, Xin
    Wang, Yuancheng
    Du, Xinming
    JOURNAL OF FOOD PROCESS ENGINEERING, 2025, 48 (01)
  • [23] CFD-DEM study of the effect of cyclone arrangements on the gas-solid flow dynamics in the full-loop circulating fluidized bed
    Wang, Shuai
    Luo, Kun
    Hu, Chenshu
    Fan, Jianren
    CHEMICAL ENGINEERING SCIENCE, 2017, 172 : 199 - 215
  • [24] CFD-DEM study of the effects of direct current electric field on gas-solid fluidization
    Liu, Guodong
    Liao, Pengwei
    Zhao, Junnan
    Wang, Shuai
    Wu, Yao
    Yin, Xiaolong
    Lu, Huilin
    POWDER TECHNOLOGY, 2020, 362 : 416 - 427
  • [25] Experimental and CFD-DEM numerical evaluation of flow and heat transfer characteristics in mixed pulsed fluidized beds
    Li, Hong-Wei
    Wang, Lei
    Wang, Ting
    Du, Chang-he
    ADVANCED POWDER TECHNOLOGY, 2020, 31 (08) : 3144 - 3157
  • [26] Influences of operating parameters on the fluidized bed coal gasification process: A coarse-grained CFD-DEM study
    Hu, Chenshu
    Luo, Kun
    Wang, Shuai
    Sun, Liyan
    Fan, Jianren
    CHEMICAL ENGINEERING SCIENCE, 2019, 195 : 693 - 706
  • [27] The research of gas-solid fluidized bed bubbling behavior based on CFD-DEM coupled simulation
    Xie, Yuhui
    Chen, Yibiao
    Fang, Zheng
    Zhou, Hongming
    Wei, Shuaikang
    Yang, Lei
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2023, 195 : 166 - 180
  • [28] Influence of void fraction calculation on fidelity of CFD-DEM simulation of gas-solid bubbling fluidized beds
    Peng, Zhengbiao
    Doroodchi, Elham
    Luo, Caimao
    Moghtaderi, Behdad
    AICHE JOURNAL, 2014, 60 (06) : 2000 - 2018
  • [29] Numerical investigation of segregation and mixing in bidisperse systems using the coarse-grained CFD-DEM approach
    Grabowski, Janna
    Jurtz, Nico
    Brandt, Viktor
    Obermeier, Leana
    Kruggel-Emden, Harald
    Kraume, Matthias
    POWDER TECHNOLOGY, 2025, 458
  • [30] Direct reduction of iron-ore with hydrogen in fluidized beds: A coarse-grained CFD-DEM-IBM study
    Lan, Bin
    Xu, Ji
    Lu, Shuai
    Liu, Yige
    Xu, Fan
    Zhao, Bidan
    Zou, Zheng
    Zhai, Ming
    Wang, Junwu
    POWDER TECHNOLOGY, 2024, 438