Use of commercial or indigenous yeast impacts the S. cerevisiae transcriptome during wine fermentation

被引:1
作者
Whiteley, Lauren E. [1 ,2 ,3 ]
Rieckh, Georg [1 ,2 ,3 ]
Diggle, Frances L. [1 ,2 ,3 ]
Alaga, Zach M. [4 ]
Nachbaur, Elizabeth H. [4 ]
Nachbaur, William T. [4 ]
Whiteley, Marvin [1 ,2 ,3 ]
机构
[1] Georgia Inst Technol, Sch Biol Sci, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Ctr Microbial Dynam & Infect, Atlanta, GA 30332 USA
[3] Emory Childrens Cyst Fibrosis Ctr, Atlanta, GA 30324 USA
[4] Alegria Vineyards & Acorn Winery, Healdsburg, CA USA
关键词
Saccharomyces cerevisiae; wine; fermentation; indigenous yeast; seripauperins; flocculate; Metschnikowia; Pichia; SACCHAROMYCES-CEREVISIAE; GENE-EXPRESSION; FLOCCULATION; TRANSPORTER; SEQUENCE; PERMEASE; PROTEIN; CLONING; AROMA; HXT5;
D O I
10.1128/spectrum.01194-24
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Grapes have been cultivated for wine production for millennia. Wine production involves a complex biochemical process where sugars in grapes must be converted into alcohol and other compounds by microbial fermentation, primarily by the yeast Saccharomyces cerevisiae. Commercially available S. cerevisiae strains are often used in winemaking, but indigenous (native) strains are gaining attention for their potential to contribute unique flavors. Recent advancements in high-throughput DNA sequencing have revolutionized our understanding of microbial communities during wine fermentation. Indeed, transcriptomic analysis of S. cerevisiae during wine fermentation has revealed a core gene expression program and provided insights into how this yeast adapts to fermentation conditions. Here, we assessed how the age of vines impacts the grape fungal microbiome and used transcriptomics to characterize microbial functions in grape must be fermented with commercial and native S. cerevisiae. We discovered that similar to 130-year-old Zinfandel vines harbor higher fungal loads on their grapes compared to 20-year-old Zinfandel vines, but fungal diversity is similar. Additionally, a comparison of inoculated and uninoculated fermentations showed distinct fungal dynamics, with uninoculated fermentations harboring the yeasts Metschnikowia and Pichia. Transcriptomic analysis revealed significant differences in gene expression between fermentations inoculated and not inoculated with a commercial S. cerevisiae strain. Genes related to metabolism, stress response, and cell adhesion were differentially expressed, indicating varied functionality of S. cerevisiae in these fermentations. These findings provide insights into S. cerevisiae function during fermentation and highlight the potential for indigenous yeast to contribute to wine diversity.
引用
收藏
页数:14
相关论文
共 62 条
[1]   Wine Yeast Terroir: Separating the Wheat from the Chaff-for an Open Debate [J].
Alexandre, Herve .
MICROORGANISMS, 2020, 8 (05)
[2]   Associations among Wine Grape Microbiome, Metabolome, and Fermentation Behavior Suggest Microbial Contribution to Regional Wine Characteristics [J].
Bokulich, Nicholas A. ;
Collins, Thomas S. ;
Masarweh, Chad ;
Allen, Greg ;
Heymann, Hildegarde ;
Ebeler, Susan E. ;
Mills, David A. .
MBIO, 2016, 7 (03)
[3]   A genetic approach of wine yeast fermentation capacity in nitrogen-starvation reveals the key role of nitrogen signaling [J].
Brice, Claire ;
Sanchez, Isabelle ;
Bigey, Frederic ;
Legras, Jean-Luc ;
Blondin, Bruno .
BMC GENOMICS, 2014, 15
[4]  
Callahan BJ, 2016, NAT METHODS, V13, P581, DOI [10.1038/nmeth.3869, 10.1038/NMETH.3869]
[5]   QIIME allows analysis of high-throughput community sequencing data [J].
Caporaso, J. Gregory ;
Kuczynski, Justin ;
Stombaugh, Jesse ;
Bittinger, Kyle ;
Bushman, Frederic D. ;
Costello, Elizabeth K. ;
Fierer, Noah ;
Pena, Antonio Gonzalez ;
Goodrich, Julia K. ;
Gordon, Jeffrey I. ;
Huttley, Gavin A. ;
Kelley, Scott T. ;
Knights, Dan ;
Koenig, Jeremy E. ;
Ley, Ruth E. ;
Lozupone, Catherine A. ;
McDonald, Daniel ;
Muegge, Brian D. ;
Pirrung, Meg ;
Reeder, Jens ;
Sevinsky, Joel R. ;
Tumbaugh, Peter J. ;
Walters, William A. ;
Widmann, Jeremy ;
Yatsunenko, Tanya ;
Zaneveld, Jesse ;
Knight, Rob .
NATURE METHODS, 2010, 7 (05) :335-336
[6]   Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae [J].
Comitini, Francesca ;
Gobbi, Mirko ;
Domizio, Paola ;
Romani, Cristina ;
Lencioni, Livio ;
Mannazzu, Ilaria ;
Ciani, Maurizio .
FOOD MICROBIOLOGY, 2011, 28 (05) :873-882
[7]   Different Non-Saccharomyces Yeast Species Stimulate Nutrient Consumption in S-cerevisiae Mixed Cultures [J].
Curiel, Jose A. ;
Morales, Pilar ;
Gonzalez, Ramon ;
Tronchoni, Jordi .
FRONTIERS IN MICROBIOLOGY, 2017, 8
[8]   Characterization of the putative maltose transporters encoded by YDL247w and YJR160c [J].
Day, RE ;
Higgins, VJ ;
Rogers, PJ ;
Dawes, IW .
YEAST, 2002, 19 (12) :1015-1027
[9]   Functional analysis of the hexose transporter homologue HXT5 in Saccharomyces cerevisiae [J].
Diderich, JA ;
Schuurmans, JM ;
Van Gaalen, MC ;
Kruckeberg, AL ;
Van Dam, K .
YEAST, 2001, 18 (16) :1515-1524
[10]   Flocculation in Saccharomyces cerevisiae is repressed by the COMPASS methylation complex during high-gravity fermentation [J].
Dietvorst, Judith ;
Brandt, Anders .
YEAST, 2008, 25 (12) :891-901